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PREFACE

This collection of problems and exercises in mathematical anal-
ysis covers ithe maximum requirements of general courses in
higher mathematics for higher technical schools. It contains over
3,000 problems sequentially arranged in Chapters 1 to X covering
all branches of higher mathematics (with the exception of ana-
lytical geomelry) given in college courses. Particular attention is
given to the most important sections of the course that require
established skills (the finding of limits, diflerenfiation techniques,
the graphing of functions, integration techniques, the applications
of definile inltegrals, series, the solulion of diflerential equations).

Since some inslitutes have exlended courses of mathematics,
the aulhors have included problems on field theory, the Fourier
method, and approximale calculations. Experience shows that
the number of problems given in this book not only fully satisfies
the requiremen s of the student, as far as practical mas'‘ering of
the various seclions of the course goes, bui also enables the in-
structor 1o supply a varied choice of problems in each section
and 1o select problems for tesls and examinalions.

Each chap.er begins with a brief theorelical iniroduction that
covers the basic definitions and formulas of that seclion of the
course. Here the most imporiant typical problems are worked out
in full. We believe that this will greally simplify the work of
the student. Answers are given lo all compulalional problems;
one aslerisk indicales that hinfs to the solulion are given in
the answers, {wo asterisks, that the solution is given. The
problems are frequenily illusirated by drawings.

This collection of problems is the result of many years of
teaching higher mathematics in the technical schools of the Soviet
Union. It includes, in addition to original problems and exam-
ples, a large numiber of commonly used problems.






Chapter 1
INTROCDUCTICN TO ANALYSIS

Sec. 1. Functions

1°. Real numters. Rational and irrational numbers are collectively known
as real numbers T1he abwolule palue of a real number a 15 understood to be
the nonnegative number |a| defined by the conditions” |a| =@ if a =0, and
laJ-—E——a if @< 0. The following incquality holds for all real numbers a
and b:
la4b|<|aj+]|bl.

2°, Definition of a function. If to every value*) of a variable x, which
belongs to some collection (set) E, there corresponds one and only one linite
value of the quantity y, then y is said to be a function (single-valued) of x
or a dependent tariable defined on the set E, x is the argument or indepen-
dent variable The fact that y 15 a function of x 1s expressed in brief form
by the notation y= f(x) or y=F (1), and {he like

If to every value of x belonging to some set E there corresponds one or
several values of the vanable y, then y is called a multiple-valued [unction
of x defined on E. From now on we shall use the word “function” only in
the meaning of a single-valued funchion, f not otherwise stated

3° The domain of dellnition of a lunction. The collection of values of x for
which the given function 15 delined 1s called the domain of definttion (or the
domain) of this Tunction. In the simplest cases, the domain of a function 1s
either a closed tnterval |a.b|, which is the sel of real numbers x that satisiy
the inequalities a=<x =< b, or anopen (nlerval (a.b). which 's the set of real
numbers that satisly the incqualit.es a < x < b. Also possible 1s a more com-
!plex2struclure ol the domain ol delimtron of a function (see, for 1nstance, Prob-
emn 21)

Example 1. Determine the domain of defimtion of the function

1
s I/x*"—l '

Solution. The function is defined if
x2—1>0,

that is, if [x|> 1. Thus, the domain of the function is a set of {wo inter-
valsi—o <x<-—1 and l<x <+ ®»

4°. Inverse functions. 11 the equationy=[(x) may be solved uniquely for
the variable x, that is, il there is a function x==g(y) such that y=/|g(y)l.

t t:l) Hencelorth all values will be considered as real, il not otherwise
stated,
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then the function x=g(y), or, in standard notation, y =g (x), is the inverse
of y=F[(x). Obviously, g [f(x)] =x, that is, the function f(x) is the tnverse
of g(x) (and vice versa).

In 1l e sereral case, ke equation y=f(x) cefines a multiple-valued in-
verse function x=f""(y) such that y={|f"'(y)] for all y that are values of
the function f(x)

Exangle 2. Cetermine the inverse of the [unction

y=1-—-27% (1)
Solution. Solving equation (1) for ¥, we have
2% l—y
and
___ log(l—y)
"7 log2 & (2)

Obviously, the domain of cefinition of the function (2) is—ow <y<].
5°. Corrposite and implicit functicns. A function y of x defined by a se-

ries of equalitiesy = f (1), where u= (x), etc., is called a composite function,
or a funclion of a function.

A function defined by an equation not solved for the dependent variable
is called an tmplictl function. For example, the equation x¥-fy*=1 defines
y as an implict function of x.

6°. The graph of a function. A set of points (x,y) in an xy-plane, whose
coordinales are connected by the equation y==f(x), is called the graph of
the given funct:on,

1**. Prove that if a and b are real numbers then

lla|—|bll<|a—0b|<|a|+|b]

2. Prove the following equalities:
a) labl=lal-[6]; o |5|=15]®+0
~ b) |a|'=a} d) Vat=|al.
3. Solve the inequalities:
a) |[x—1]<3; ¢ |2x+1]|<1;
b [x+1]>2; d) {x—1|<{x+1).

4. Find f(—1), [(0), [(1), F2) [(3), f(4), if f(x)=x"—6x"+
+ 11x—6.

5. Find [(0), F{—3 ). [(—=0.7(5)s g il F=V T~

6. f(x)=arccos(logx). Find f(l—lﬁ) , (1), FQ10).

7. The function [ (x) is linear. Find this function, if f(—1)=2
and [(2)=—3.

*) Log x is the logarithm of the number x to the base 10,
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8. Find the rational integral function f(x) of degree two, il
fO)=1, [(1)=0 and [(3)=5.

9. Given that f(4) = —2, [(5)=6. Approximate the value of
f(4, 3) il we consider the function ) (x) on the inlerval 4<x <5
linear (linear interpolation of a [unction).

10. Write the function

0, if x<0,
“")‘{ % if 50

as a single formula using the absolute-value sign.
Determine the domains of definition of the following functions:

1. a) y=Vx+1; 16. y=Vx—x".
Aondl %
o b) y= l/lx'H' 17. yzlogzii .
- Yy=1_—"" x*—3x1-2
- 18. y=log——
13. a) y=V¥*—2; S .
b) y=xV ¥ —2. 19. y=arccos

l4+x °
20. y=arcsin (log 1%) .

14, y=V 2+ x—x".
15. y=V—x+V—§L_;.

21. Determine the domain of definition of the function

y=Vsin2x.
22. f(x)=2x*"—3x*—5x*+6x— 10, Find

QW =5 (F@)+F(—0] and W(x)=-[f(x)—F(—x).

23. A function f(x) defined in a symmetric region —Il<<x<<!
is called even if f(—x)=f(x) and odd if [(—x)=—f(x).

Determine which of the following functions are even and which
are odd: |

a) f(x) = (a*+a~%);

b) f)=VT+x+x—VT—x+x5
¢) f(x)= V(x—j— )*f V(X—_l)‘;
d) f(x)=log+tZ;

l—x’
e) f(x)=log (x+ ¥V T+
24. Prove that any function f(x) defined in the interval

—Il<x<l! may be represented in the forin of the sum of an
even function and an odd function,
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25. Prove that the product of two even functions or of two odd
functions is an even fvnction, and that the product of an even
function by an odd function is an odd function.

26. A function [(x) 1s called periodic if there exists a positive
numker T (the period of the |unction) such that f(x+ T)=f(x)
for all valves of x within the dcmain of definition of f(x).

Cetermine which of the follcwing functions are periodic, and
for {lLe pericdic funclicns find their least period T:

a) f(x)=10sin3x, d) f(x)=sin®x;
b) f(x)=asinAx+bcoshx; e) f(x)=sin (Vﬁc_)
¢) f(x)=Vtanx;
27. Express the length of the segment y=MAN and the area S

of the figure AMN as a function of x=AM (Fig 1). Construct
the graphs of these functions.

D c 28. The linear density (that is,
T mass per unit length) of a rod AB=1
N b (Fig. 2) on the segments AC=1,,
Y CD=!, and DB=1I,(l,+ 1, + I,=1)
A[//S M . + is equal to ¢,, g, and ¢,, respec-
..;:, I Ty 15
t— (] IE"’ ‘H,'c"-u"nir-"“‘"*zl
A “--.____C_'..- D B
= a i x
Fig. 1 Fig. 2

tively. Express the mass m of a variable segment AM =x of this
rod as a function of x. Construct the graph of this function.
29. Find ¢ |y (x)] and ¢ )], il ¢(x)=%" and ¢ (x)=2%

30. Find f{FIf ()}, if Fx) = 3—.
31. Find f(x+ 1), if f(x—1)=x.
32, Let f(n) be the sum of n terms of an arithmetic progression.
Show that
f(n+3)—3f (n+2)+3f (n4-1)—f (n) =0.
33. Show that if

[(x)=kx+b

and the numbers x,, x,, x, form an arithmetic progression, then

the numkters f(x,), f(x,) and [(x,) likewise form such a pro-
gression.
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34. Prove that il f(x) is an exponential function, that is,
f(x)=a*(@a>0), and the numters x, x,, x, form an arithmetic
progression, then the numbers f(x,), f(x,) and f(x,) form a geo-
metric progression.

356. Let

14+x
f (x) = log ="k

Show that

F+fo =F(SL).

36. Let q:(x):—é—(a"{-a*") and 1p(x)=—12—(a"—a").
Show that
P+ =0 @)+ b)Y (y)

P (x+y)=¢x) DY)+ o) P (x).

37. Find f(—1), f(0), f(1) if

f(x)—{ arcsinxfor—1 < v <0,
“larctanxfor0 < x -4 oo,

and

38. Determine the roots (zeros) of the region of positivity and
of the region of negativity of the function y if:

2) y=1+ux; d) y=x*—3x;

b] y:Q-‘I—X"—x!;

¢) y=1—x+4x%

2x
e) y=Ilog s

39. Find the inverse of the function g if:

a) y—_:Qx-{_S; d)y::log.f.;
b) y=x*—1; t?3
& g=VI=2 ¢) y=arc tan3x.

In what regions will these inverse functions be defined?
40. Find the inverse of the function
[ x if x<0,
Y= 2, if x>0.
41. Write the given functions as a series of equalities each

member of which contains a simple elementary function (power,
exponential, trigonometric, and the like):

a) y=(2x—>5)'% c) y=]ogtan%;

b) y=2cosx; d) y =arcsin (3-),
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42. Write as a single equation the composite functions repre-
sented as a series of equalities:

a) y=u', u=sinx;
b) y=arctanu, u=Vv, v =log x;
& y={ 2u, .ii n<0,
0, if u>0;
w=x*"—1.
43. Write, explicitly, functions of y defined by the equations:
a) x'—arccos y=m,
b) 10*+ 10" = 10;
c) x+|y|=2y.
Find the domains of definition of the given implicit functions.

Sec. 2. Graphs of Elementary Functicns

Craphs of functions y=f(x) are mainly constructed by marking a suffi-
ciently dence net of points M;(x;, y;), where y,=f(x;)(i=0, 1, 2,...) and
by connecting the points with a line that takes account of inlermediate pounts,
Calculations are best done by a shde rule.

Fig. 3

Graphs of the basic elementary functions (see Ap pendix VI) are readily
learned through their comstruction. Proceeding from the graph of

y=f(x), ()

we get the graphs of the following functions by means of simple geometric
constructions;

1) y,=—[(x) is the mirror image of the graph I' about the x-axis;

2) yy=[(—=x) is the mirror image of the graph T about the y-axis;
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3) ys=1[(x—a) Is the T' graph displaced along the x-axis by an amount a;

4) y,-—b-l—f(x} is the I' graph displaced along the y-axis by an amount b
(Fig. 3).

Example. Construct the graph of the function

y=sin ( x—-l_;—) .

Solutlon. The desired line is a sine curve y=sinx displaced along the x-axis
to the right by an amount %— (Fig. 4)

Fig. 4

Construct the graphs of the following linear functions
(straight lines):

44, y=kx, il k=0, 1, 2, f2 ———l — 2.

45. y=x-+0b, if b=0, 1, , —2.

46. y=1.bx + 2.

Construct the graphs of rational integral funetions of degree
two (parabolas).

47. y=ax®, ifa=1, 2, 1/2, —1, —2, 0,

48. y=x"+¢, if ¢c=0, 1, 2, —1.

49. y=(x—x,)", ii x,=0, 1, 2, —1.

50, y=y,+ (x—1)* il y,=0, 1, 2, — L.

51*. y=ax"+ bx+c, il: 1) a=1, b=—2, ¢=3; 2) a=—2,
b=6, c=0.

52. y=2 { x—x*. Find lhe points ot intersection of this pa-
rabola with the x-axis.

Construct the graphs of the following rational integral func-
tions of degree above two:

63*. y=x' (cubic parabola).

54. y=2+ (x— 1)

65, y=x"—3x+4-2,

56. y=x*.

57. y=2x"—x*,

Consiruct the graphs of the following linear fractional func-
tions (hyperbolas):

58*. y=-.

X
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89. y=7—-
—2
60. y_:Tz.
61*. y=y°—]—xfl , if x,=1, yy=—1, m=6.
62*. y=3—>
Construct the graphs of the fractional rational functions:
63. y=x—|——£—.
..1'2
€4. Y=
™ 1
65". y=F.
|
66. Y= g
67*. =;,l%_—l (W itch of Agnest).
68. y=%~i (Newton’s serpentine).

69. y=x+x.

70. y=x’—|—% (trident of Newton).
Construct the graphs of the irrational functions:
. y=Vx

72. y=y/x.

73*. y=/x* (Niele's parabola).

74. y= 4+ xV'x (semicubical parabola).
5% y=- 5 VIB—x* (ellipse).

76. y=+ V' x*—1 (hyperbola).

78*, y=+ x fo (cissoid of Diocles).
79. y=4+ xV 25— x*.
Consltruct the graphs of the irigonometric functions:

80*. y=sinux. 83*. y=cot x.
81*. y=cosx. 84*. y=sec x.
82*, y=tanx. 85*. y = cosec x.

86. y= Asinx, if A=1, 10, 1/2, —2,
87*. y=sinnx, if n=1, 2, 3, 1/2.
o 3n 14

88. y=sin(x—g), it ¢=0, 3, 5, 51, —7F.
89*, y=~>5 sin (2x—3).
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90*. y=asinx+bcosx, if a=6, b=--8.

91. y= sin x+4- cos x. 96. y=1—2cosx.

92*%, y=rcos'x, 97. y= sin x—--lg sin 3x.
93*. y=x+ sinx. 98. y= cosx—l—-%—cost.
94*. y=xsinx. 99*, y= cns-::—.

95. y=tan’x. 100. y=4 Vsinx.

Construct the graphs of the exponential and logarithmic fune-
tions:

101. y=a*, if a=2, 4, e(e—2 718 ...)%).

102*. y=log, x, if a= 10, 2, 2,

103*, y= sinh x, where sinhx= 112 (e*—e~%).
104*. y=cosh x, where coshx=1/2 (e* ¢ %).

105*, y=1anh x, where tanhx=8inh X

coshx*

1
106. y=10+*,
107*. y=e~*" (probability curve).

1
108. y—2~ 7, 13. y=log L.
109. y=log x*, 114, y=log(— x).
110. y=1log’x. 115. y=log, (1 4+ x).
111. r=log(10gx). 116. y=log (cos x).
112, ;——m 117. y=2"%sin x.
Construct the graphs of the inverse trigonometric functions:
118*%. y=arc sin x. 122. y=arcsin;‘.
119*. y=arc cosx, 123. y=arccos—£-.
120*. y=arctanx. 124. y=x+ arccot x.

121*. y=arccol x.
Construct the graphs of the functions:

125. y=|x)|.

126. y=15 (x-+x)).

127. a) y=x|x|; b) y=Ilog, —|x|.
128. a) y~—smx~|—|smx| b) y=sin x—|sin x|.

3—x* when |x|<< 1.

129. y={ —'—E-l— when [x|> 1.

*) About the number e see p. 22 for more details.
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130. a) y=|[x], b) y=x—[x], where [x] is the in'egral part
of the number x, that is, the grea'est inleger less than or equal
to x.

Consiruct the graphs of the following functions in the polar
coordina.e sysiem (r, ¢) (r =0):

131. r =

132%, r=5;— (spiral of Archimedes).
133*. r=e¢* (logrrithmic spiral).
134, r=% (hyperbolic spiral).
135. r=2cosy (circle).

136. r=-

137. r =sec’ (parabo!a)

138", r= 10 sin 3@ (three-leafed rose)

139*. r=a(l +cosg) (a>0) (cardioid).

140*. r*=a’cos2¢ (a>0) (lemniscate).

Construct the graphs of the functions represented parametri-

cally:

141*, x=1, y=1* (semicubical parabola).

142*. x=10 cos f, y= sint (ellipse).

143*. x=10cos’t, y=10sin"t (astroid).

144*, x=a(co'at+tsmt) y=a(sint—icost) (involute of a
circle). i

145*, x=1:ft,, yml_it't_' (folium of Descartes).

a al 4oz
146. x T , Y= i (semicircle).

147, x==2' 27, y-2‘—2" (branch of a hyperbola).

148. x=2cos* ¢, y=2sin*¢ (segment of a straight line).

149, x=(—1', y=1—1

150. x--a(2cmt—u}q2t) y=a(2 sint—sin 2f) (cardioid).
- Construct the graphs of the following functions defined implic-
Ily:

I51%.x* + y* =25 (circle).
152. Xy = 12 (hyperbcla).
153*. Y —2x ( parabola ).

154. 100+64—] (ellipse).
155. y* = x"(100— x*).
156%. x* +y* =a* (astroid).

157*. x+y= 10logy.
1568. x*=cousy.
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arg lan —

i

159*, Vi Lyl=e * (logarithmic spiral).

160*, x* 4 ' —3xy=0 ([olium of Descartes).

161. Derive the conversion formula from the Celsius scale (C)
to the Fahrenheit scale (F) il it is known that 0°C corresponds
to 32°F and 100°C corresponds to 212°F.

Construct the graph of the function obtained.

162. Inscribed in a triangle (base b =10, altitude h=6) is a
rectangle (Fig. 5). Express the area of the rectangle y as a func-
tion of the base x.

]_ I—

b

Fig. 5 Fig 6

Construct the graph of this function and find its greatlest
value.

163. Given a triangle ACB with BC =a, AC=0 and a variable
angle - ACB=x (Fig. 6).

Express y=area /\ ABC as a function of x. Plot the graph
of this function and find its greatest value.

164. Give a graphic solution of the equations:

a) 2x*—bx+2=0; d) 10-*=ux,
b) #*+x—1=0; e) x=14 05sinx;
¢) logx=0.1x; f) cot x=x (0 <x< ).

165. Solve the systems of equations graphically:

a) xy=10, x4+ y=T1,

b) xy=06, x*+y*=13;

¢) X¥*—x+y=4, y'—2x=0;

d) x* +y=10, x4+ y*=6;

e) y=sinx, y=cosx (0<<x<<2m),
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Sec. 3. Limits

1°. The limit of a sequence. The number a is the limif of a sequence
xll xaq . " ® g xn. LI T 1 OI'
lim x,=a,
n +w

if for any & > 0 there is a number N= N (g) such that
lx,—a| <e when n>N.
Example 1. Show that

lim 22 H1_o )
n->m n—}-
Solution. Form the difference
2n +l_ _ 1
n+41 o417
Evaluating the absolute value of this difference, we have:
2n -1 I_ 1
n+1_2 _n+l<s’ @)

if

-~ I e,
n;g—l—Nta).

Thus, for every positive number e there will be a number N-——-é——l such

that for n > M we will have irequality (2) Consequently, the number 2 is
the limit of the sequence x,=(2a+ 1)/(n+ 1). hencs, formula (1) is true.

2°, The limit of a function. We say that a function f(x) + A as x +a
(A and a are numbers), or

lim [{x)=A,

X =a

if for every 2 >0 we have §=20 (e) > 0 such that
lf)—Al<e for 0<[x—al| <.
Simtlarly,
lim f(x)=A,
X —= @

it [f()—A|<efor |x]> N (e).
The lollowing conventional notation 1s also used:

lim [{x)=c0,
X—=-=0

which means that |f (x)| > E for 0 <|x—a| < 8 (E), where E is an arbitrary
positive number

3°. One-sided limits. If x <a and x —+a, then we write conventionally
x - a—10; stmularly, il x >a and x — a, then we write x - a+40. The numbers
fla—O)= lim f(x) and |(@a+0)= lim f(x)

X +a-0 X—=+a+0

are called, respectively, the limil on the left of the function f(x) at the point

and the limut on the right of the function [(x) at the point a (if these
numbers exist).
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For the existence of the limit of a function f(x) as x —+a, it is necessary
and sufficient to have the following equality:

fla—0)=f(a+0).
If the limits lim f, (x) and llm f, (x) exist, then the following theorems.

| old: B
1 “m If. () +f2 (O] = lim f, {x)-l_thaf’ (x);
2) “m [fl () f. ()] = hm fl (x)- thaf! (x);
3) Im] I.fl (x)/fa (x)] = hm fl (x)/ “mafz (x) yimaf: (x) # 0).
The following two limits are frequently used:
lim .s..ﬂf.--l
xX—»>0 X -
and
1
Y

Tim (1+.})’= lim (1+a)® =e=2 71828 . . ,

X —+ ® o =0

Example 2. Find the limits on the right and left of the function

1
f (x)=arc tan =

as x -» 0,
Solution. We have

f(+0)= lim (mctani):.ﬁ
X =+ +0 X 2
and

f(—0)= lim (atcian-i—):._._ﬂ;

X~ =9 27

Obviously, the function f(x) in this case has no limit as x -+ 0.

166. Prove that as n— oo the limit of the sequence
1 !
ll T 3y eeay 3y

is equal to zero. For which values of n will we have the inequal-
ity
L<e

(e is an arbitrary positive number)?
Calcula e numerically for a) e=0.1; b) e=0.01; ¢) e=0.001.
167. Prove that the limit of the sequence

fl

x,,:m (n=1, 2; 89
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as n—oo is unity, For which values of n>N will we have
the inequality
|x,—1]|<e

(e is an arbitrary positive number)?
Find N for a) e=0.1; b) e=0.01: ¢) e=0.001.
168. Prove that
lim x*=4.
How should one choose, for a given positive number e, some
positive number 8 so that the inequality

[x*—4|<<e
should follow from
[x—2|<<é?

Compute 8 for a) e=0.1; b) e=0.01; ¢) e=0.001.
169. Give the exact meaning of {he following notations:
a) lim logx=—o0; b) lim 2= 4+ o0; ¢) limf(x) =00

X -» 40 X » 4o X =+ o
170. Find the limits of the sequences:
11 1 (— 1)1 _
a) ll __2—1 U SR n e as
2 4 6 2n
b) F? gt RN S gRfE sEs

c) V2, ]/2V2 1/2]/2]/2

d) 0.2, 0.23, 0.233, 0.2333,

Find the limits:

171. lim (’%—l—%-%—%—l— . ._,_n—l)-

2
n»w\ n

: (n4+1in4+2)(n+43
172. lim M 5 (r+3)

n+ax

173. lim [14:3+5+7-|-_,.+'(2n——l]_2n+l].
n—w n+1 2
g (—1)7
174. nh-.ﬂlm.
. ?n+l+3ﬂ+l
175. JEHW—W-
176, lim (g+4+g+ ... +g).
y (_'I'}l"l-l'
177. nll:l‘; [l—§-|- '9——§—7+ ”'+_T5W] .

178*, lim LtZ+¥+.. +a'

3
n~w® n
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179. lim (V n+1—V n).
" mn sinnl

L o

180, lim

H—w

When seckirg the limit of a ratio of two integral polynomials In x as
x — oo, it is uscful first lo divide both terms of the ratio by x", where n is
the highest degree of these polyromials.

A similar procedure is also possible in many cases for Iractions contain-
ing irrational terms.

Example 1.
lim (2x—3) (3x + 5) (4x—6) _
X—>o 3,’&’—}*)('—'] )
3 5 6
. (2—;) (34’?) (4“?_)_2.3.4=8
Lo o 4] A 1 l - 3 )
AL
Example 2.
liﬂ'l — __x____‘ == lil‘ﬂ - 1 — = 1_
X > 3 X+® - 10
Y 2410 ip 2
(A1) . 20" —3x—4
181. rll:ll e 1 86. uh:l}n T
182, li !,—2[10—9'-:. 187. lim j%:iz
x-.r:nl“ x-bmx_i_l/x
. x®— By | g
183. lim > 188, lim — > ——.
x> w ’jx“i'? x_”t]o_l_x,fx
. 2¢*—x-+ 3 3 :
184. lim —————. . 2
¢y —8T 5 189. lim Z-t{rf‘.
185, iy &3 Ge—2 T Ve
fo @ 245 190. lim — ad .

v e ]/ s+ Vx4 Vo

If P(x) and Q (x) are integral polynomials and P (u) #0 or @ () %0,
{hen the limit of the rational Iraction
- P (x)
v->aQ(x)

is obtained directly.
But if P (@)= Q (@)=0, then it is advisable lo cancel {he binonual x=—a

out of the fraction T ) once or several times.
Q (x)

Example 3.

"—4 (x—2)(x +2) __ . x+2
Im =2 _ 1 = B
.--T.x‘-——3x+2 x—T:(J:——Q)(x-—-I) xir.ngx—-—l 4
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: P | . X'—3x+ 2
191. lliﬂ'l_’ 53'_,_—1 195. ll_lzll -—___A‘—4x+3'

.  x*—bBx-+10 . x*—(a+ 1) x+a
192. ",hfl"—.t"——fﬁ_'ﬂ' 196. xh-]»na ©C—ad .
193. xhﬂﬁllm. 197. hllq[}'lo—-——-’;!—-— .

. x2—2x : ] 3
194. lim E2, 198. lim (15— =),

The expressions containing irrational ferms are in many cases rational-
ized by introducing a new variable.

Example 4. Find

tim V1FE=1
x—ro/]+x_l
Solution. Putling
14+ x =yt
we have
pm Y Fa—=1 _ o' —1_ o 'yl _3
a0 2/ Thx—1 w>14—1 yo1 y+1 2°
—~ s
199. lim KxL—l—L 201. lim '/"—_l
I—PIV_ 8 x-i-l]‘f' x =1
200. lim —2—° | .V e —2y w1
x-ui/x.._;; 202. llm’ / K (x_léx+ .

Another way of finding the limit of an irrational expression is to trans-

fer the irrational ferm from the nuwerator to the denominalor, or vice versa,
from the deriominator to the numeralor.

Example 5.
im Y x=Va_ yn x—a
#ra &8 © sasz—al(V 2V )
' i 1
= lim e — = — (a > 0).
s+aV x+Va 2Va
. 92— x—3 . 3—V5+x
03. lim ———, 06. lim —_
2 g ¥ —49 £ x-bcl--V‘5—x
204, lin -2=% . im Y 1tx—Vi—x
x*sV - __2 2071- ‘!li:no X .
205. lim V1= 208. lim YXth=Vx

“""*‘V&-‘-—i. h—o h )
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209. lim i"/x_ﬂh—‘VI. 212, lim ang_x]_
T -
sk 215. lin(x+ / T—x).
The formula e
o,

i frequently used when solving the following examples. It is taken for
granled that limsinx=sma and limcus x =cus a.

X—+d X—+a
Example 6.
lim stn5x= lim "‘i"‘r"“-5)=-1-5:5.
=0 X x-pu\
. i . .
216. a) lim ex. 227, a) lim xsin i;
X2 X —=+0 x
b) lim i b) lim xsin .
X+ X—+ x
917. lim 303%, 298. lim (1--x)tan ™*.
X—=0 X=>1 2
918. lim 3" o . 229. lim cot 2x cot (f-—x) .
x g S 2x F 2
219, lim 207 1—sin =
¥ - Su1 3mx 230. lim u__x2 -
220. lim (nsini). T
n . 231, lim 1Z2ESX
991 lim 1=C08% aat,
X0 x' ¥
. sinx—sina 239, lig S20F —SREE
B s o
s tan x —sima
. €S X—C0sa 233. lim
220, lin SEE, o
. tan nx 234, fim ¥
224, J“l-:n_]i PR e »
_ . arc tan 2¢
995 lim 3" (x +:)-—-sinx. 235. ]:La o
hay
o —x?
\ . inx—c¢

£ —
4
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: —sin 2x B
237 lim ¥ eX Vs
X —=0 X +Sll.'l 3x 239' lxlgln = )
; nx - _
238. lim ios_?—_ 240. lim V‘+Si"xx V1—sinx _
. ts1l— V--; ) r—+o

When taking limits of the form
lim | (x))¥®=C (3)

X=-+0a

one should bear in mind that:
1) if there are final limits

limp(x)=A and Iim1 (x)=B8,
X-+=a E—=a
then C=A®B;
2) il lime(xy=A%#1 and limy(x)==4 oo, then the problem of finding

r =0 X -+l
the limt of (3) is solved in straightiorward fashion;
3) il limgix)y=1 and lm P(x)=cc, then we put @(x)=1+a(x),

K —-a X +a
where a(x) - 0 as x - a and, Len.e,

1 lim a{x) ¢y tim [p(x) —=1] ¥ (x)
C = lim {“—I—ﬂ(:)lu {x]}x(.r)tp(xl_____ex +a =ex-+a 5
X »+d

where e=2.718 . . . Is Napier's number.
Example 7. Find

lim (sin 2x‘)'+”

X -—+q X

Solution. Here,

lim (’“"2“)=2 and Nm (14+-x)=1;

X0 X X0
hence,
lim (sln2x)"""=2|=2_
xX—+0 X
Example 8. Find
lim ( 2+ )",
x> ® (2x—|—l
Sotution. We have
1
14—
Hm JH'I=1Im x=_l-
x+o 2x+1 o | 2
2+—;

and

lim xi=-4oco.
X—» @
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Therefore,
lim ( _x_il) =0,

x»o \2x+1

lim (x—l)‘.
x-»m \X+ 1

Example 9. Find

Sclution. We have

lim *=!_ Iim X =l
X2 X411 rsw 1
| 4—
X
Transforming, as indicated above, we have
_l ad . .‘-""‘—1 X
lim : = lim - =
x—rm(x-l—i) xamll+( x+41 l)J
X+ x

- 22X

9 Tyl +x 1Im i
t—— " & —p¥ ™ et
.t—-bmw{[ i-(x+l)-l } ‘ e

In this case it is easier to find the limit without resorting to the general

procedure:
i \* : 1\~%
X N A

li {:l, x— = ==
.t—rmw(x'*'l) xm( t)x ( I \* e =
1+-;)

1
?

Lim

¥ m

Generally, it is useful to remember that

X @ X

241. 1131(%) - fi"i‘(xi; )..
A li;",(f?:}n)m' 249. nm(:;)"“.

2 4

243. lim (55 . 250. lim(1+ %)".

n—so

— 1

. lim (1 4-sin x)?

E—+0

(

( :
245. llm(J'M'2 )xn. . 5

i

(

252**, a) lim (cosx)*;
1\ X0
I — n) : , x
b) lim(cos x)*
2 * x=-»0
l + ;' "

n—pd
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When solving the problems that follow, it is useful to know that ii the

timit lim f (x) exists and is positive, then
Xl

lim [Inf(x)]=In [lim f(x)].

Example 10. Prove that
lim In “+I)=l. (t)

X0 X
Solution. We have

1
im U0 i (1p (140 F | =10 lim (1 40 F 1= ne=1.
X—=>D X0

X—+0 X

Formula (*) is frequently used in the solution ol problems.

253. lim[In(2x+1)—In (x4 2)].

X—+
954, lim 22 (1+109)
X—=>0 X )
; 1 T+x ; -
255. 11_::: 7 In V%—i—;) 260*. linln(,’ya—l) (a>0).
256. lim x[ln(x+1)—Inx]. 261 lim&=¢",
-+ > X—0
957. lim 2050) 262, lim ="
i3 ¥ rasg SINX
258*, lim"=! . 263. a) lim T 1%
£ ] X—+0
259*, um"xx'" (a >0), b) limc—“ih—f,l'l
X0 X—0

(see Problems 103 and 104).
Find the following limits that occur on one side:

4. l. —x'-—'- . &
A% B YT b) lim —_,
ol X=++4+0 —_
b) lim 2., | +e*
X+ sz'l—l . In (1 +¢%)
265, a) lintanh x; 267. a) lim ———
K=t = 7 K~ —®
b) lim tanh x, b) lim l_r‘l_(_l_-{-_e_-“) .
X—=+® X o X
X _ =X
where tanhx=:T-+-_§=-,;, 268. a) lim LE‘:_“;
; § e
266. a) xl_l,ﬂ'_l. s b) lim |51;-‘f.

E—»+0

l—[—e-'?
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269. a) lim — 270. a) lim—
X—] = ol _ll X—»2—0 2
—1
b) lim =
J?_-Hrol x—1]" x—sa+0 ¥ 2

Construct the graphs of the following functions:
271**, y=1lim (cos x).

n—+m

272*, y=lim—— (x=0).

N
A 1+

273. y=Ilim V' x* + o’

=0

274. y=Ilim (arctan nx).

n—+o

275. y=Ilimy/1+x" (x=0).
276. Transform the following mixed periodic fraction into
a common fraction:
a=0.13555...

Regard it as the limit of the corresponding finite fraction.
277. What will happen {o the roois of the quadratic equation

ax*+bx+c=0,

if the coefficient a approaches zero while the coeificients b and ¢
are constant, and bs£0?

278. Find the limit of the interior angle of a regular n-gon
as n — oo,

279. Find the limit of the perimeters of regular n-gons inscribed
in a circle of radius R and circumscribed about it as n— oo.

2¢0. Find the himit of the sum of the lengths of the ordinates
of the curve

-%
y = e~ % cos nx,

drawn at the points x=0, 1, 2, ..., n, as n— oo,
2&1. Find the limit of the sum of the areas of the squares
constructed on the ordinates of the curve

y=2|-x

as on bases, where x=1, 2, 3, ..., n, provided that n — oo.
282. Find the limit ol the perlmeter of a broken line M oM. .M,
inscribed in a logarithmic spiral

;= ®
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(as n — oo), if the vertices of this broken line have, respectively,
the polar angles
. nmn

(p.=0, q:’l=%l ) (Pr;='§_'

283. A segment AB=a (Fig. 7) is divided into n equal parts,
each part serving as the base of an isosceles triangle with base
angles «==45°. Show that the limit ol the perimeler of {he bro-
ken line thus formed diflers from the
lengzth of AB despile the fact that in
the limit the broken line “geometrically
merges with the segment AB”.

.ar_@/\/)&a/)/\/\/:g

Fig. 7 Fig 8

984. The point C, divides a segment AB--[ in hall; the
point C, divides a segment AC, in half; the point C, divides a
segment C,C, in half; the point C, divides C,C, in hali, and so
on. Determine the linuting position of the point C, when n—-ov.

285. The side a of a right triangle is divided into n equal
parts, on cach of which is constructed an inscribed rectangle
(Fig. 8). Determine the limit of the area of the step-like figure
thus formed if n— ov.

286. Find the constants & and b from the cquation

lim (k.\f. + bt )=0. (1)

1> x=+l

What is the geometric meaning of (1)?

287*. A cerlain chemical process proceeds in such fashion
that the increase in quantity of a substance during cach interval
of time t out of the infinite sequence of intervals (tv, (i 1)7)
(i=0, 1, 2, ...) is proportional to the quantity of the substance
available at the comimencement of each interval and to the length
of the interval. Assuming that the quantity of substance at the
initial time is Q,, determine the quantity of substance Q{" after

the elapse of time ¢ il the increase takes place each nth part of

the time interval r=%—.

Find Q,=limQ{.

n-—+-w
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Sec. 4. Infinitely Small and Large Quantities

1°. Infinitely small quantities (infinitesimals). If
lima (x)=0,

X—a
j.e., if |a(x)|<e when 0 <|v—a| < 8(e), then the function a(x) is an
tnfinitesimal as x— a. In similar fashion we define the infinitesimal a (x)
as x —* .
The sum and producl of a limited number of infinitesimals as x — g are
also infinitesimals as x - a.
If @a(x) and P (x) are infinitesimals as x—>a and

lim E.if).:

X1 ﬂ (A’J

where C is some number different from zero, then the funclions a(x) and f(x)
are called infinitesimals of the same order; but if C=0, then we say that the
function a(x) is an infinttesimal of higher order than f(x). The function
u (x) is called an infinitesimal of order n compared with the function B (x) if

a (x)
x—a [B ()]" =
wherlef{]c:IClc: +- 0.
a(x)_,
xwaf(x)
then the funclions a (x) and B (x) are called equivalent functions as x —*a:
a (x)~f (x).

For example, for x—> 0 we have

sinx~x; tanx~x; In(l4x)~x
and so forth,
The sum of two infinitesimals of different orders is equivalent to the
term whose order is lower.
The limit of a ratio of {wo infinilesimals remains unchanged if the terins
of the ratio are replaced by equivalent quantities. By virtue of this theorem,
when taking the limit of a fraction

lim %)

ot Tl

where @ (x) — 0 and B (x)— 0 as x— a, we can subtract from (or add to)
the numerator or denominator infinitesimals of higher orders chosen so that
the resultant quantities should be equivalent to the original quantities.

Example 1. P 4 (i
¥ )4
lim _'/_{._i._.f:..:lim l/x'
x>0 In (l+2x) x-»0 2X

2°, Infinitely large quantities (inflnites). If for an arbitrarily large num-
ber N there exists a O(N) such that when 0 < |x—a| < §(N) we have the

inequality -
[f () [ > N,

then the function f(x) is called an infinite as x—>a.

_ 1
=5

2—1900
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The definition of an infinite f(x) as x—> o is analogous. As in the case
of infinitesimals, we introduce the concept of infinites of different orders.

288. Prove that the function

Feo=7

is an infinilesimal as x— oo. For what values of x is the ine-
quality
If(x)|<e

fulfilled if e is an arbitrary number?
Calculate for: a) e =0.1; b) e=0.01; ¢) e=0.001.
289. Prove that the function

fx)=1—x

is an infinitesimal for x — 1. For what wvalues of x is the ine-
quality
[Fixy|<e

fulfilled if e is an arbitrary positive number? Calculate numeri-
cally for: a) e=0.1; b) e=0.01; c) e=0.001.
290. Prove that the function

f )=

is an infinite for x— 2. In what neighbourhoods of |x—2|<<C§d is
the inequality
(F(x) | >N

fulfilled if N is an arbitrary positive number? :

Find 6 if a) N=10; b N=100;
c) N=1000.

291. Determine the order of smallness
of: a) the surface of a sphere, b) the volume
of a sphere if the radius of the sphere r
is an infinitesimal of order ome. What
will the orders be of the radius of the
sphere and the volume of the sphere with
respect to its surface?

— 292. Let the central angle a of a cir-

18 cular sector ABO (Fig. 9) with radius R

tend to zero. Determine the orders of

the infinilesimals relative to the infinitesimal a: a) of the
chord AB; b) of the line CD; c) of the area of A ABD.
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293, For x—0 determine the orders of smallness relative to
x of the functions:

a) 2 d) 1 —cos x;

1+x 7 e) tan x — sin x,

b) Vx+Vx:

c) Vi —Vx

294. Prove that the length of an infinitesimal arc of a circle
of constant radius is equivalent to the length of its chord.

295. Can we say that an infinitesimally small segment and

an infinitesimally small semicircle constructed on this segment

as a diameter are equivalent?
Using the theorem of the ratio of two infinilesimals, find

. 8in 3x-sin bx ; Inx
296. 11_{:: Tl 298. LI-IE T
. COS X—CO08s2x
_arcsin Vi 299. lim e
297. hm . X0

x>0 In(l—x)

300. Prove that when x-— 0 the quantities % and J'T+x—I

are equivalent. Using this result, demonstrate that when |x| is
small we have the approximate equality

Vitaml+5. (1)
Applying formula (1), approximate the following:
a) V/'1.06; b) 1V'0.97; c) V10; d) V120

and compare the values obtained with tabular data.
301. Prove that when x— 0 we have the following approxi-
mate equalities accurate to terms of order x™:

1
3) Ti%
b) Va*+x~a+s5, (a>0);
c) (14+x)"~1+nx (n is a positive integer);
d) log (1 + x) =Mux,
where M =loge=0.43429...

Using these formulas, approximate:
1 1 1 — <
) 1530 2 gt D ggs 9 V16 6) 1.04%; 6)0.93% 7) log 1.1

~|—ux

Compare the values obtained with tabular data.

2*
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302. Show that for x — oo the rational integral function
P(x)=ax"+ax""'+ ... +a, (a,#0)

is an infinitely large quantity equivalent to the term of highest
degree a x".

303. Let x— oo. Taking x to be an infinite of the first order,
determine the order of growth of the functions:

a) x';, 100 x — 1,000, ¢) VEV_;
b) —=% ¢ d) 3/ x—2x".

Sec. 5. Continuity of Functions

1°. Deflnition of continulty. A function f(x) is confinuous when x=§

{or “at the point £"), if: 1) this function is defined at the point E, that is,

there exists a number F (§); 2) there exists a finite limit lim f(x); 3) this lim-
X

it is equal to the value of the function at the point E, i.e.,

lim f (x) =1 (). (1)
x—»E
Putting
x=84 AE,
where A§~— 0, condition (1) may be rewritten as
lim Af )= lim [f(E+ AE)—f (§))=0, (2)
AE—0 Ao

or the function f(x) is continuous at the point § if (and only if) at this point
to an infinitesimal increment in the argument there corresponds an infinitesi-
mal increment in the function.

If a function is continuous at every point of some region (intervai, etc,),
then it is said to be continuous in this region.

Example 1. Prove that the function

]

y=sinx

{s continuous for every value of the argument x.
Solution. We have

. Ax
Ax Ax sin —- A
Ay =sin (x+ Ax)—sin x =2 sin — cos (x —) == 2 . v o
Yy 5 + 3 ¥ cos ( £+ 3 Ax.
Since 2
Ax
sin — A
ng Ax =1 and cos(x+ -E—)IGI.
2
it follows that for any x we have
' lim Ay:[),
Ax—o

Hence, the funclion sin x is continuous when — oo <x< + .
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2°. Points of discontinuity of a functlon. We say that a function f(x)has
a _discontinuity ‘at x==x, (or at the point x,) within the domain of definition
of the function or on the boundary of this domain if there is a break in the
continuity of the function at this point.

Example 2. The Function f(x)::-(-l_:—'l—;)_:- (Fig. 10a) is discontinuous
when x==1, This function is not defined at the point x=1, and no matter

I - ' f y=E(z)

o I

1'|—-—-'—b-' J

e Tt T ————

(¢)
Fig. 10

how we choose the number f (1), the redefined function f(x) will not be con-

tinuous for x=1.
If the function f(x) has finife limits:

Um f(x)==f(x,2—0) and lim [(x)=Ff(x+0),

X3X;=0 X-+Xg+0

and not all three numbers f(x,), f(xo—0). f(x,-+-0) are equal, then x, is called
a discontinuity of the first kind. In particular, if

f(rg=0)=f (x,4-0),

then x, is called a removable discontinuity.
For continuity of a function f(x) at a point x,, it is necessary and sui-

ficient that
f (xo) =f (xg=—0)=F (x,+ 0).
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Example 3. The function f(x}=s—;:—if has a discontinuity of the first kind
at x=0. Indeed, here,

fG40= I BUX_ a4y

i>+0 X
and

f(—=0)= lim S*_ 4,
X»=0—X

Example 4. The function y=E (x), where E (x) denotes the integral part
of the number x [i.e., E (x) isaninteger that satisfiesthe equality x==E(x)+g¢,
where 0 < g < 1], is discontinuous (Fig. 10b) at every integral point: x=0,
+1, £2, ..., and all the discontinuities are of the first kind.

Indeed, if n is an integer, then E (n—0)=n—1 and E (n4+0)=n. At all
other points this function is, obviously, continuous,

Discontinuities of a function that are not of the first kind are called
discontinuities of the second kind.

Infinite discontinuities also belong to discontinuities of the second kind.
These are points x, such that at least one of the one-sided limits, f (x,—0) or
f(xy+0), is equal to o (see Example 2).

Example 5. The function g,;:cos?ﬂ (Fig. 10c¢) at the point x=0 has a

l;lis.wnﬁnuit];f of the second kind, since both one-sided limits are nonexistent
ere.:

limcos™ and lim cos’f..,
X>—0 b 4 X=+0 X

3°. Properties of continuous functions. When testing functions for conti-
nuity, bear in mind the following theorems:

1) the sum and product of a limited number of functions continuous in
some region is a function that is continuous in this region;

2) the quotient of two functions continuous in some region is a continuous
function for all values of the argument of this region that do not make the
divisor zero,

3) if a funclion f(x) is continuous in an interval (a, b), and a setof its
values is contdined in the interval (A, B), and a function @ (x) is continuous
in (A, B), then the composite function ¢ [f(x)] is continuous in {a, b).

A function f(x) continuous in an interval [a, b] hasthe following proper-
ties:

1) f(x) is bounded on {a, b}, i.e., there is some number M such that
if(x)|==M when e<<x< b;

2) f (x) has a minimum and a maximum value on [a, b)];

3) j{x? takes on all intermediate values between the two given values;
that is, if f(e)=A and f(f)=B (a<<a < p<b), then no matter what the
number C between A and B, there will be at least one value x=1y (a<y<p)
such that f(y)=C.

In particular, il f(a)f(B)<0, then the equation

[(x)=0

has at least one real root in the interval (a, B).

304. Show that the function y=x* is continuous for any value
of the argument x.
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305. Prove that the rational integral iunction
Pxy=ax"+ax"""+...+a,

is continuous for any value of «x.
306. Prove that the rational fractional function

_apx"4ax" '+ ... +a,
R (x) T b b X L b,

is continuous for all values of x except those that make the de-
nominator zero.

307*. Prove that the function y=1 x is continuous for x =0.
308. Prove that if the function f(x) is continuous and non-
negative in the interval (a, ), then the function

Fx)=Vf ()

is likewise continuous in this interval.

309*. Prove that the function y=:cos x is continuous for any x.

310. For what values of x are the functions a) tanx and
b) cot x continuous?

311*, Show that the function y=|x| is continuous. Plot the
graph of this function.

312. Prove that the absolute value of a continuous function
is a continuous function.

313. A function is defined by the formulas

- x*—4
for x5£2,
f&r={x—2

A for x=2,

How should one choose the value of the function A=f(2) so
that the thus redefined fungtion f(x) is continuous for x=2°?
Plot the graph of the function y=f(x).

314. The right side of the equation

I(x)=1——xsir'171€-

is meaningless for x=0. How should one choose the value f(0)
so that f(x) is continuous for x=0?
315. The function
f (¥) = arc tan E"-é'z"
is meaningless for x=2. Is it possible to define the value of f(2)

in such a way that the redefined function should be continuous
for x=2?
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SO

316. The function f(x) is not defined for x=0. Define f(0)
that f(x) is continuous for x=0, if:

a) f=UF2="" (n is a positive integer);

b) fln)=""r
¢) ”x)=ln(l+x)—xln(l—-x) :
Q) f="=

e) f(x):x’sin—lx—;
f) f(x)=xcotx.

Investigate the following functions for continuity:

317, y=2. 324. y=In|tan 5 |.
318. y=ll']_|:’:,. 325. y=arctan—} .
— : 1
319. y—-V—z;_ﬂ— 326. y=(1+x)arctanl—:;.
X 1
320. y=l—x' < 327' y=61+l-
- 1
321. a) y=sin— ; 328, y—e *.
— ¥ ein = 1
b) y=xsin—. 329. y=—" "
322. y=1—. _ I+e'*
323. y=In(cos x).
x% for x<<3,
330. y= Plot th h of thi jon.
Y { Syl for 478, ot the graph of this function

331. Prove that the Dirichlet function y (x), which is zero for

irrational x and unity for rational x, is discontinuous for every
value of x.

Investigate the following functions for continuity and construct

their graphs:

332. y=Ilim ——

n—-+x

I+x" (x=0).

333. y=Ilim (xarc tan nx).

n—-»-o
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334. a) y=sgnx, b) y=x sgnx, c) y=-sgn(sinx), where the
function sgn x is defined by the formulas:

+1, if x>0,
sgn x = 0, if x=0,
—1, if x<<O0.

335. a) y=x—E (x), b) y=xE (x), where E (x) is the integral
part of the number x.

336. Give an example to show that the sum of two discontin-
uous functions may be a continuous function.

337*. Let a be a regular positive fraction tending to zero
(0<<a<1). Can we put the limit of o into the equality

E(l+a)=E(l—a)+1,
which is true for all values of a?
338. Show that the equation
x—3x+1=0
has a real root in the interval (1,2). Approximate this root.
339. Prove that any polynomial P (x) of odd power has at

least one real root.
340. Prove that the equation

tan x=x

has an infinite number of real roofs.



Chapter 11
DIFFERENTIATION OF FUNCTIONS

Sec. 1. Calculating Derivatives Directly
1° Increment of the argument and inerement of the function. If x and x,
are values of the argument x, and y=f(x) and y,=f(x,) are corresponding
values of the function y=/f (x), then
Ax=x,—x
is called the increment of the argument x in the interval (x, x,), and

AYy=y,—y
or

Ay=f(x)—fx)=F (x+ Ax) —f (x) (1)

4

N(z,, i)

g

/

r 4
/ »
T 0 /7 .1' Iy X

Is called the increment of the function y in the same interval (x, x,) (Fig. 11,
where Ax=MA and Ay= AN). The ratio

Ay _
E}._tanu

is the slope of the secant MN of the graph of the function y=f (x) (Fig. 11)

and is called the mean rate of change of the function y over the interval
(x, x+ Ax).

Example 1. For the function

y=x*—bx-16
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calculate Ax and Ay, corresponding to a change in the argument:

a) fromx=1 to x=1.1;
b) fromx=3 to x=2.

Solution. We have

a) Ax=1.1—-1=0.1,
Ay=(1.1*<=5-1.146)—(1*—5.146) =—0.29;
b) Ax=2—3=-—1,
Ay =(2*~=5:2+46) ~(3*—5.3+46) =0.

Example 2, In the case of the hyperbola y:—};—, find the slope of the

’

) rd
secant passing through the points M (3, é-) and N\lo, ilﬁ)

1 7
Solution. Here, Ax=10—3=7 and Ay:m-——3—=—m. Hence,
o8, L
TAxT 30

2°, The derivative. The derivative y':jy

P of a function y=f(x) with re-

spect to the argument x is the limit of the ratio Ay when Ax approaches zero;

Ax
that is,

y'= lim 3¢

Ax -0 Ax’
The magnitude of the derivative yields the slope of the langent MT fo the
graph ol the function y=f (x) at the point x (Fig. 11):
y' =tan .

Finding the derivative ¢’ is usually called differentiation of the function. The
derivative ¥y’ =f' (x) is the rate of change of the function at the point x.
Example 3. Find the derivative of the function

g=x%
Solution. From formula (1) we have

Ay={(x+4 Ax)? —x* =2xAx-|- (Ax)*
and

Hence,

y= lim Y lim (24 Ax)=2e.
Ax+0 Ax  Ax-o

3°. One-sided derivatives. The expressions
o= tim [E+a0—/(
= e

Ax—>—9p

and
f‘+ {(x)= lm f(x+Ax)-—f(x)

Ax @+a Ax
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are called, respectivelp the left-hand or right-hand derivative of the function
f(x) at the point x. For f' (x) to exist, it is necessary and sufficient that

fo=Ff, .
Example 4 Find f_ (0) and f, (0) of the function
f(x)=]x]|.

Solution. By the definition we have

foO)= lim Ax]_

Axa-0 Ax
(0= lim LA*]_
F ) Ax »+0 AX L
4°. Infinite derivative. Ii at some point we have
lim flx+Ax)—] (x)= %

Ax =0 Ax

then we say that the continuous function f(x) has an infinite derivative at .

In this case, the tangent to the graph of the function y=/f (x) is perpendicu-
lar to the x-axis.

Example 5. Find j’ (0) of the function

y=y/%
Solution. We have
g 7
Ax
f (0)= lim "/

= lim ;——m
Ax—=0 Ax Ax? '

341. Find the increment of the function y= x* that corresponds
fo a change in argument:

a) fromx=1 to x, =2;

b) fromx=1 to x,=1.1;
c) fromx=1 to x,=1-}h.

342. Find Ay of the function y= }/% if:

a) x=0, Ax=0.001;
b) x=8, Ax==—9;
¢) x=a, Ax=h.

343. Why can we, for the function y=2x+3, determine the
increment Ay if all we know is the corresponding increment
Ax =5, while for the function y= x* this cannot be done?

344, Find the increment Ay and the ratio B9 for the func-
tions: ; Az

a) y:E,—l_—,z—); forx=1 and Ax=0.4;

by y=Vx forx=0 and Ax = 0.0001:
c) y=1logx for x= 100,000 and Ax=:=— 90,000.
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345. Find Ayandg-ii which correspond to a change in argu-
ment fromx to x-+ Ax for the functions:

a) y==ax + b; d) y=l/;f;

b) y=x" e) y=
c)yzfg; f) y=Inx,
346. Find the slope of the secant io the parabola
y=2x—x*,
if the abscissas of the points of intersection are equal:
a)y x, =1, x,=2;
b) x, =1, x =0.9;
¢) x, =1, %, ——-1+h.
To what limit does the slope of the secant tend in the latter case

if h—0?

347. What is the mean rate of change of the funclion y=x°
in the interval 1<<x=<<4?

348. The law of motion of a point is s=2f*+3f{+5, where
ihe distance s is given in centimetres and the time 7 is in seconds.
What is the average velocily of the point over the interval of
time from ¢==1 to ¢{=25?

349. gind the mean rise of the curve y=2* in the interval
l << x<<b.

350. Find the mean rise of the curve y=/f(x) in the interval
[x, x4+ Ax].

351. What is to be understood by the rise of the curve y=f(x)
at a given point x?

352. Define: a) the mean rate of rotation; b) the instantaneous
rate of rotation.

353. A hot body placed in a medium of lower temperature
cools off. What is to be understood by: a) the mean rate of
cooling; b) the rate of cooling at a given instant?

354. What is to be understood by the rate of reaction of a sub-
stance in a chemical reaction?

355. Let m={f(x) be the mass of a non-homogeneous rod over
the interval [0, x]. What is to be understood by: a) the mean
linear density of the rod on the interval [x, x4+ Ax]; b) the linear
density of the rod at a pomt x?

356. Find the ratio -; of the function y—;« at the point

x=2, if: a) Ax=1; b) Ax=0.1; ¢) Ax=0.01. What is the deriv-
ative y’ when x =2?
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357**. Find the derivative of the function y=tanux.

358. Find y' = lim % of the functions:
Ax—>0

a) y=+5 © y=Vx
b) y:.%i; d) y =cotx.

359. Calculate f' (8), if f(x)=}/x.

360. Find f'(0), f' (1), F'(2), if f(x}=2x(x—1)"(x—2)".

361. At what points does the derivative of the function
f (x)= x* coincide numerically with the value of the function itself,
that is, f(x)=f (x)?

362. The law of motion of a point is s=5¢*, where the dis-
tance s is in metres and the time 7 is in seconds. Find the speed
at 1 =3.

363. Find the slope of the tangent to the curve y=0.1x*
drawn at a point with abscissa x=2.

364. Find the slope of the tangeni to the curve y=sinx at
the point (x, 0).

I

365. Find the value of the derivative of the function f(x}z?
at the point x=ux (%, + 0).
366*. What are the slopes of the tangents to the curves y=7[€-

and y=x" at the point of their intersection? Find the angle be-
tween these tangents.

367**. Show that the following functions do not have finite
derivatives at the indicated points:

a) y=y/ x* at x=0;
b) y=3/x—1 at x=1;

2k 1
¢) y=|cos x| at X=—7—mn, k=0, &1, +2, ..,

Sec. 2. Tabular Differentiation

1°. Basic rules for finding a derivative. If ¢ is a constant and u=g (x),
v=1 (x) are functions that have derivatives, then

1) (¢) =0; b) (uv}'j—-u'u—!- v'u;
9 =1 6 () =257 o oy

4

W
B (wtovy=u +v5 7) (;’3)'=—°"' (v # 0).

U!
4) (cu) =cu';
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2°, Table of derivatives of basic functions

L.

, 1
I1. x) = x> 0).
(Vx) sy =9
II1. (sin x)’ =cos x.
IV. (cos x)! =—sinx,
, 1
V. (tan x) -m.
VI, (cot x) e
1
VIIL. (arcsinx) = ———— x| <l
(presin ¥’ = s (1x] <D
VIil. (arccosx)’ = oz (lx] <))
]—x?*
o |
IX. (arc 10 x) —m.
i =1
X. (arccot x) =FTi
XI1. (&) =a* Ina.
XIL. (e*) =e*.
X111 (lnx)'=% (x> 0).
, 1 logge
XIV. (log, x) i 7 e T (x>0, a>0).
XV. (sinh x)" = cosh x.
XVI. (cosh x)’ =sinh x.
"
XVIIL (tanh x) —Eas—hi-}.
.
XVIII. [CD”’I.I) mm.
XI1X.

XX. (arc cosh x)' =

™) = nax"™1,

(arcsinh x)' = 7117_—’:
x
1
V x2—1

(lx]>1).

XXI. (arc tanh x)’:l_l—-? (1] < 1)

X XII. (arc coth x)’ =x,__}1 (1x]>1).

3°. Rule for differentiating a composite function. If y=7F(u) and u=9 (),
that is, y=Ff [¢@ (x)], where the functions y and u bave derivatives, then

Y=Y,y (H
or in other notations
dy dydu
dx  dudx’

This rule extends to a series of any finite number of differentiable functions.
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Example 1. Find the derivative of the function

y=(x*—2x+3)"

i Solution. Putting y=u®, where u=(x*—2x+43), by formula (1) we will
ave

¥ = (u®), (P —2x+3), =5u* (26 —2) =10 (x—=1) (x* —2x - 3)".

Example 2. Find the derivative of the function

y =sin® 4x.
Solution. Putting
y=u®, u=sinv; v=4dx,
we find
y =3u*.cosv-4= 12 sin* 4x cos 4x.

Find the derivatives of the following functions (the rule for

diflerentiating a composite function is not used in problems
368-408).

A. Algebraic Functions

2 S
368. y=x*—4x*+ 2x—3. 375. y=3x*" —2x* 4+-x~*,
369. y=—5x+—0.5x%. 376%. y=x'}/ 7.
b
370. y=ax® + bx+c. 377, Y=o — =
/x’ x"/x
—53 a-bx
3. y=—/—. 378. Y= Tar
372 y=at™+ bt"*", 379, y=pgos.
__ax"4-b _# 2 I
373. y= T 380. Y=gy,
374. y=-"-+1n2. 381. y=:+:;f_
— Ve

B. Inverse Circular and Trigonometric Functions

382, y=>5 sin x4 3 cos x. 386. y=arctanx + arccot x.
383. y=tanx—cot . 387. y=uxcotx.
384. y-_—-:%i—_'!f—i:g:i_ 388. y=xarc sin x.

(1+x*arctan x—x

385. y=2¢ sint—(£*—2) cost. 389. y= 5
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C. Exponential and Logarithmic Functions

396.
397.

398.

399
400

y=e¢”" arc sin x.

x.
nx—-g-.

In x

1
. y=? +2 lnx—-;-.
. y=Inxlogx—Inalog, x.

D. Hyperbolic and [nverse Hyperbolic Functions

390. y=x"-¢".

391, y=(x—1)e*

392. y="5;

393. y_.—_':—;

394. [(x)=e" cos x.

395, y=(x"—2x 4 2)e*,

401. y=xsinhzx,

x!

102, y= cosh x °

403. y=tanh x—ux.
3coth x

04 y= lnx

E. Composite Functions

405. y =arctan x—arctanh x.

406. y=arc sin x arcsinhx,

407. y
408. y

arc cosh x

__ar¢ coth x
1 —x2

In problems 409 to 466, use the rule for differentiating a composite func-
tion with one interinediate argument.

Find the derivatives of the following functions:

409**. y=(1 +3x-- 5x*)*".

Solution. Denote | 4-3x—5x*=u; then y=u*. We have:

410.

411,
412.

413.

414,

415.
416.

Y, =30u* u =3—10x

1, = 306+ (3—10x) =30 (1 4 3x —5x2)*.(3 — 10x).

ax+b\?
y=(=5).
f(y)=(2a + 3by)".
y=(3 4 2x")*.
3

1

== W= W@x—=1"

y=V1—%.
y=y a+bx'.
yz (a‘h—x’fl)‘f:.
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417. y=(3—2sinx)".

Solution. y'=b6(3—2sinx)* (3—2sinx)' =5 (3—2sinx)* (— 2cos x) =
— 10 cos x (3—2 sin x)4.

1 . 1 .
418, y=tanx—§tan x+-5—tan X.

419. y= V cot x—V cota. 423. y=3c;s'xﬁ_éolx'
420. y=2x- 5 cos’ x. 424, y= VBsinxg-2cusx.
421*, x=cosec”f -} sec' . 425. y= Vgﬁ'i'_x-l-msax-
422, f(x)=— ;1

6 (1 —3cosx)*’

426. y=}/ 1+ arc sin x.

427. y=7V arctan x— (arc sin x)".
428, y=—

arctanx’

429. y=V xe* +x.
430. y=1/2—2* + 1 +Inx.
431. y=sin3x 4 cos ¢ +tanV/ x.

Solution. y’' = cos 3x-(3x)" —sin -g- (1)'—[— gy (Vx) =3 c0s 3x —
cos! Vx
x 1
2 V xcos? Vi’
432. y=sin (x*—>5x- 1) + tan % ‘

433. f(x;=rcos(ax+p).
434. f(#)=sint sin({ +¢).

SII‘I

435. y= %ig—-gzi‘: .

436. f(x)=acot=.

437, y=— il(—) cos (5x*) — %— cos x°.

438. y=arc sin 2x.

Solution. y’ :71-*{#__@ < (2x)' = Vi i4x= ;

439. y=arc sin }l, . 441. y=arctan ~—!—

440. f(x)=arccos }/ . 442, y=arc cotl +x
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443. y=5e*", 447. y=arc cos e*.
444. y— _1_'. 448. y=In(2x4 7).
5% 449. y=log sin x.
445. y=x" 10", 450. y=In(1—x*).
446. f(t)=1sin2', 451. y=In* x—In(lnx).
452. y=1In(e* + 5 sin x— 4 arc sin x).
453. y=arctan (In x) 4 In (arc tan x).
454. y=Vinx+1+In(Vx+1).

4B5**. y= sin’ 5xcos’ =

F. Miscellaneous Functions

T -
I 4
456. Y=—"g5x—2p x—2°
15 10 !
457. y=— g3 3G—3) Zx—3)"
458. y=-8(—1_}_5_—;¢
159, y— sz*xzx—H
X
W = var=
xl

461. y—'3 Vw(l ‘I‘ ,_).‘
462 y=3 Y/ T+ Re Y T2 V4o VR
163. y= 5/ T+ 2) —5 V/ T+
464. y== V%
465. y=x*(a—2x")".

__[{a+bx™\"™
466. y= (3100 )"

9 3 2 !

467. y=5‘[x+2)s_(x+2)l+(x+2)' T 2(x+2)*"
468. y=(a+x)Va—x.
469. y =V (x+a) (x+b) (x+0).
470. 2=V y + Vy.
an. f(y=(2t+1)(3¢+2) /3 +2.
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1
Vi
473. y=In(VT+eF—1)—In(V' T+ +1).

472, x=

474. y = 115 cos® x (3 cos® x—95).
2. 4 2
475. y— (tan®x 1)(tzntaxn;|—x10tan x+])
476. y=tan® 5x. 485. y=arcsin -
477. y = sin (&), 486. y— arc sin V&F
e &in® (1Y), 487. y _arccosx
478. y= sin® (") =T

479. y=3sinxcos' x+ sin*x. 488, y=-y—%.arc sin (x ]/-2) .
480. y=—;tan’x—-tanx+x. 489, y=Va*—x* +aarcsin= .

a

481. y=—;:Tm+%c°tx' 490. y=xV a' — x* +a* arc sin=.

482. y=V a sin*x+Pcos’x. 491. y=arcsin(l—x)+V 2x—x*.
483. y = arc sinx* + arccosx®.

Blr

f—

484. y= ]E(arc sinx)®arccosx.

492, y= (x—%) arc sin )/ x —i—% Vx—x

493. y=In(arc sin 5x).

494. y=arc sin (In x).
xsina

I—xcosa

495. y-=arctan

x
Stan?—l—é

496. y= % arc tan 3

497. y=3b* arc tan —x—;-(Bb +2x) Vbx—x*

498, y=— /2 arc cot —]—/--:—A,
499, y=V e*.
500, 1 == el %,

501. F (x)=(2ma™" + b)*.
502. F (t)=¢" cospt.

__{asin Bx— B cos Px) ¥
603. y= o ;
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1 o—*
504. y=——0 (3 sin 3x—cos 3x). gg7. P
505. y=x"a 508. y_in(ax + bx +c¢).
508, y= osxa"'“’” 509. y=In(x+Va*+x).
510. y=x—2Vx+2In(1 +Vx)-
511. y=In (CH x4 V2x+%"). s514¢. 1n:":f;:
512- y= ﬂ x ) 1 515. yzln (x l{'—(";_g)
513. y=Incos—. ]

X 516. yz—m—ﬁlnlanx.
517. y=—;~]/x’—a’—%ln(x+]/x'-—a').
518. y==InlIn(3—2x%).
519. y=>5In®(ax-+ b).
o Vira4x

520. y=1In 7 e D

m T 2 n xX—a
921. y=*§—ln(x —a’) I-E_ﬂ nx+a.
522. y=x-sin(lnx—~—}).

1 X I cosx
523. y:—]ntan Rt e
524. )=V 11— %ﬂ}f—'

1 xX¥*—2x 41

b23a. y—-?lﬂm "
526, y=2arcsinax 4 (] —arc cos 3x)".

sin ux

<98 bt 1 sinfax
527. ¢ Y= geos b g 3 cos? bx

{ 'lan—-+ 2— V3
528. y=—=

V3 tan §+ 24 V-B
529. y=arc taninx.
530. y=Inarc sin x-i—% In*x+ arc sininx.
531. y=arctanln_17.
539 V2 x I, ox—1

szarCtan—ﬁ?+Fln}_ﬂ'
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533. y=In 11—"_"—7'[——2+ 2arc tan Vsm X.

» -[-l
534. y"'_ 1+ x+l+ S
535. f(x)———?ln(l +x)——gln(x' +1)+7:arc tan T
536. f (x) = Z==r 4 In V=¥

arc tan x.
i

Vi—
537. y=sinh®2x. 542. y=arc cosh In x.
538. y=¢e"* cosh pux. 543. y=arc tanh (tan x).
539, y=tanh®2x, 544. y = arc coth (sec x).
540. y=Insinh2x. 545. y=arctanh ;——; +x'
541. y=arcsinh%—,. 546. y=§(x’—1)arctanhx+—;—x.

547. y= (—;- x'—«——i—) arcsinhx——i—xl/l + X',
548. Find y’, if:

a) y=|x|;
b) y=x|x]|.

Construct the graphs of the functions y and y’.
549. Find ' if

_ y=In[x| (x~0).
6560. Find §' (x) if

f(x) ={
551. Calculate f* (0) if
f(x)=e"* cos 3x.

Solutlon. [’ (x)=e~* (—3 sin 3x) —e~* cos 3x;
[ (0)=¢® (—3sin 0)—e® cos 0 =—1.

l—x for x<<O,
e~* for x>0.

5b2. f(x)=!n(1+x)+arcsin—§-. Find f' (1).

653. y=tan' . Find (%) .
554. Find f+(0) and f_(0) of the functions:
A fW=VEme: 9 f)=x'sin+, x£0; f(0)=

b) f(x)_-arcsln — E=FL @ fM=xsint  x50; [(0)=0
) [(x)=—— \,, x50, [(0)=

14+e*
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5565. Find f(0)-+ xf' (0) of the function f(x)=e~".
556. Find f(3)4 (x—3)f (3) of the function f(x)=V 1+ x.
55f?.(0§:iiven the functions f(x)=tanx and ¢ (x)=In(l1—x),
find m.
558. Given the functions f(x)=1—x and ¢ (x)= l—sin%x-,
¢’ (1)
4 7y
559. Prove that the derivative of an even function is an odd
function, and the derivative of an odd f{unction is an even func-
tion.
560. Prove that the derivative of a periodic function is also
a periodic function.
561. Show that the function y=xe~* satisfies the equation

xy' = (1—x}y. .

562. Show that the function y=xe * satisfies the equation
xy' = (1—x%)y.

563. Show that the function y=
tion xy' =y (yInx—1).

fin

1

P satisfies the equa-

G. Logarithmic Derivative

A logarithmic derivative of a function y=f(x) is the derivative of the
logarithm of this function; that is,

Y )
n ) = =Fn

Finding the derivative is sometimes simplified by first taking logs of the func-
tion.
Example. Find the derivative of 1he exponential function

y=u",
where u=@ (x) and v =1 (x).
Solution. Taking logarithms we get

Iny=vlnu.

Differentiate both sides of this equation with respect fo x:

(Inyg) =v' lnu+v(Inu),
or

1 1

— ’: ‘] — "

v y=vilnu4v - u
whence

e ’ _E__!
y_y(u lnu+u u),
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or

r [} U L]
y'=u® (U Inu-l-——-u u )
564. Find y’, ii

y=3/ = ll -l_—;' sin® x cos® x.

Solution. Iny=%1nx+ln[1—x)-ln{l+:c")+3ln sin x 4-2 In cos x;
1 , 21 (=1 2sinx
?y _-3'?+1—x l+x’+ sinx ¥ T Tosx

2 1 2x
whence y'=y w T—x ite

+3cot x—2tan x)

565. Find y’, if y=(sinx)*.
Solution. Iny=uxInsinx; %y'=ln sin x -} x cot x;

y" = (sin x)* (In sin x 4 x cot x).

In the following problems find 4" after first taking logs of the

function y=FJ(x):

566, y=(x+1)2x+ 1)(Bx+1). 574. y=17x.

_ (=42 N
567. Y= G eI 875. y=x" *.
== X
568, y= ]/"fc"__z’. 576. y=x*
a 2
569. y=x V;ﬁ‘l 577, y=yxslnx,
B70; e e o) . 578. y=(cos x)sinx,
S Vo e—an y={cou s}
x—1 1\*
B, st . 7.=( -).
) v 127 V{x+3y 0% y={l+3
672. y=x*. 580. y=(arc tan x)*.
573. y=x*.

Sec. 3. The Derivatives of Functions Not Represented Explicitly

1°. The derivative of an inverse function. Il a function y=f(x) has a

derivative y_‘gé() then the derivative of the inverse function x=f-'(y) is

x__l
¢ y‘
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or
dx 1

dy~ dy’
dx

Example 1. Find the derivative x;. if
y=x-Inx.

. 1 x+41 ‘ x
Solution. We have gy, =1+4—=-—— hence, x, ~x41°
2°. The derivalives of functions represented parametrically. 1f a function y
is related to an argument x by means of a parameter {,

{ x =@ (),
y=1y (1),

then

or, in other notation,

dy i

Example 2. Find 35

x=acosft,
y=a sin {

dx \ dy _
a__—-asmt and -&;_amst. Whence

@_ __acos t
dx asint

Solution. We find

== —cof 1.

3°. The derivative of an implicit function. If the relationship between x
and y is given in implicit form,

F(x, y)=0, (1)

tlien to find the derivative y;=y' in the simplest cases it is sufficient: 1) to

calculate the derivative, with respect to x, of the left side of equation (1),
taking y as a function of x; 2) to equate this derivative to zero, that is, to put

d
e F(x, y)=0, (2)

and 3) to solve the resulting equation for y'.
Example 3. Find the derivative y, if
x* + y*—3axy=0. 3)
Solutlon. Forming the derivative of the left side of (3) and equating it

to zero, we get
3x* 4+ 3y"y’ —3a (y + xy') =0,



58 Differentiation of Functions [Ch. 2

whence
,  X—ay
T ax—yt’

681. Find the derivative x, if
a) y=23x+x";
b) y=x—-%-sinx;
c) y=0.1x+e—:'.
In the following problems, find the derivative y’=g—i of the
functions y represented parametrically:

= —l, = ltl
582. {x 2=t 589. | * ac?s.
y="=. \ y=0 sin*¢.
; 1 3
sgs. | EFL so0. | ¥4 "
. A _ { 2 y:bsm £,
| v=(71) o
cos? {
fx=_ga_!" x-—-—'V-_s?.tn
1+t"’ ] co
584- 4 d(l—-!zl 591' _ Sil’l’t‘
Y= V=Vesa
at (. 1
x=l+£“ X—HTCCOSV_I_I—F,
585. { 3ai® 592. | _ ;
.t/=1+t'i- Yy == arc sin Viih"
[M=V—E1 x=e_',
586. 1 Y 593- { __at
y=yt. y=e".
x=,]/t'+1, x=a( In tan -;—+cost——sirlt),
587. y = i—1 594. .
—“‘V‘—,;ﬁ - y=a(sint + cost).

E8S. { x=a(cost+tsint),

y=a (sint—1¢cost).
595. Calculate % when f="" if

dx 2
{ x=a (t—sin ),
y=a(l —cosi).
Solution. dy a sin ¢ sin £

d_x=a(l——cos 1) 1—cost



Sec. 3] The Derivatives of Funclions Not Represented Explicitly 59

and
sinﬂ-
(#)s g
dx /e 2 | —cos .
¥ 2
d x=tInt,
596. Find d—y when =1 if In
X y:—t—-—_

_ ot
§97. Find % when #="" i {x—ef cos,
. 4 y=¢e'sint.

598. Prove that a function y represented parametrically by the

equations
x == 2t + 3¢1*,
{ y =142t

o= (&) +2(&)

599. When x=2 the following equation is true:

satisfies the equation

xt=2x.
Does it follow from this that
(x*) = (2x)’
when x=2?

600. Let y=)a"—x'. Is it possible to perform term-by-term
differentiation of
x! +yI:al?

In the examples that follow it is required to find the deriva-

tive y'=% of the implicit functions y.
601. 2x—5y-+10=0. 609. acos’ (x4 y)=0b.
602 Ei_{*ﬂzl 610. tany=xy.
o ==l )
603. x'+y'=a’. 611. xy==arc tan?.
4 2
604. x*--x'y +y*=0. 612. arctan(x+y)=x.
605. V x-+V y=Va. 813. & =x+y.
A
606. 3/ X+ yi=y a 614. Inx+e * =c.
x—y . X —c.
607. y' =120, 615. Iny+==c

1 '
608. y—0.3siny=x. 616. arctan %=-2-In(x'—]-y).
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617. |/x’—|—y*=carctan%. 618. x¥'=y".
619. Find y' at the point M (1,l), if
2y =1 xy°.

Solution, Differentiating, we get 2y'=y*4-3xy%y’. Putting x=1 and
y=1, we obtain 2y'=143y’, whence y'=—1. :

620. Find the derivatives y' of specified functions y at the
indicated points: :

a) (x+4)*'=27(x—y) for x=2 and y=1;
b) ye’ =e**! for x=0 and y=I;
c) y’=x+ln-g- for x=1 and y=1.

Sec. 4. Geometrical and Mechanical Applications of the Derivative

1°. Equations of the tangent and the normal. From the geometric signifi-
cance of a derivative it follows that the equation of the tangent to a curve
y=f(x) or F(x,y)=0 at a point M (x;, y,) will be

Y—Yo=1, (x—1x,),

where y; is the value of the derivative y' at the point M (x,, y,). The straight

line passing through the point of tangency perpendicularly to the tangent is
called the normal {o the curve. For the

B normal we have the equation
Y ‘Y —y,) =
Ayﬁf r) Mﬂ#ﬁs y'féfﬂ'l x—Xo+ 4, (4 —4,) =0.
& 2°. The angle between curves. The
angle between the curves
A y=f (x)
Yo and
- C s y="fs(x)
0 To X . .
at their common point M, (x,, y,) (Fig. 12)
Fig. 12 is the angle © between the tangents
'&: M,A and MyB to these curves at the
point M,.

Using a familiar formula of analytic geometry, we get
f: (%) — f: (%)
L+ f, (%)-F (%)

3°. Segments assoclated with the tangent and the normal in a rectangular
coordinate system. The tangent and the normal determine the following four

tanw==
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segments (Fig. 13):

t=TM is the so-called segment of the tangent,
S;=TK is the subfangent,

n=/NM is the segment of the normal,
S,=KN is the subnormal.

Yl

M(z,.4,)

Yo

? 0
0 T S¢ £ Sp N X

Fig. 13

Since KM=|y,| and tan @=y,, it follows that

tmTM=]y—°,V1-I— wot|s n=NM=|gV 1+@)|;

Yo

in’ ' Sn=|yny;|-
Yo

StnTKz

4°, Segments associated with the tangent and the normal in a polar sys-

tem of coordinates. If a curve is giv-

en 1n polar coordinates by the equa-

tion r=f(p), then the angle p

formed by the tangent MT and the

radius vector r=0M (Fig. 14), is

defined by the following formula:
do

r
tanp=r =

The tangent MT and the normal MN
at the point M together with the radi-
us vector of the point of tangency

and with the perpendicular to the T

radius vector drawn through the pole Fie. 14
O determine the following four seg- g
ments (see Fig. 14):

t =MT is the segment of the polar tangent,
n=MN is the segment of the polar normal,
S4=O0T is the polar sublangent,

S,=ON is the polar subnormal.



62 Differentiation of Funcitions [Ch. 2

These segments are expressed by the following formulas:

r 5 L. _ ____‘f_,.
f=MT='—F'] V’=+(r ) St-—OT——-lrrls

n=MN=Vr+(r); Sp=0N=|r'|.

621. What angles ¢ are formed with the x-axis by the tangents
lo the curve y=x—x" at points with abscissas:
a) x=0; b) x=1/2; ¢) x=1?
Solution. We have y’'=1—2x. Whence

a) tan p=1, =45% b) tan =0, ¢=0%
c) tan g=—1, ¢=135° (Fig. 15).

622. At what angles do the sine
curves y=sinx and y= sin 2x inter-
sect the axis of abscissas at the
origin?

Fig. 15 623. At what angle does the tan-
gent curve y=tanx intersect the
axis of abscissas at the origin?

624. At what angle does the curve y=¢"** intersect the
straight line x=2?

625. Find the points at which the tangents to the curve
y=23x"+4x'—12x* 420 are parallel to the x-axis.

626. At what point is the tangent to the parabola

y=x"—7x+3

parallel to the straight line 5x+4-y—3=0?

627. Find the equation of the parabola y=x*+ bx--c that is
tangent to the straight line x=y at the point (i,1).

628. Determine the slope of the tangent to the curve x*4-4* —
— xy—7=10 at the point (1,2).

629. At what point of the curve y*=2x" is the tangent per-
pendicular to the straight line 4x—3y+2=0?

630. Write the equation of the tangent and the normal to the

arabola .
¥ y=V x

at the point with abscissa x=4.

Solution. We have y'= 4 ; Whence the slope of the tangent is
2V x

1
k=[y']_,=‘=T. Since the point of tangency has coordinates x=4, y=2, it

follows that the equation of the tangent is y—2=1/4 (x—4) or x—4y44=0.
Since the slope of the normal must be perpendicular,

ky=—4;
whence the equation of the normal: y—2=—4 (x—4) or 4x+y—18=0.
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631. Write the equations of the tangent and the normal to the
curve y=x"42x"—4x—3 at the point (—2,5).
632. Find the equations of the tangent and the normal to the

curve
y=y x—1
at the point (1,0).

633. Form the equations of the tangent and the normal to the
curves at the indicated points:
a) y=tan2x at the origin;

b) y=arc sin i'g_—l at the point of intersection with the

x-axis;

¢) y=arccos3x at the point of intersection with the y-axis;

d) y=1Inx at the point of intersection with the x-axis;

e) y=e'-* at the points of intersection with the straight
line y=1.

634. Write the equations of the tangent and the normal at the
point (2,2) to the curve

14-¢
x=T,

3 l
y—2Tz+ﬁn

635. Write the equations of the tangent to the curve

x=1tcost, y=_tsint

at the origin and at the point t=—1£.

636. Write the equations of the tangent and the normal to the
curve x’-+y*+2x—6=0 at the point with ordinate y=3.

637. Write the equation of the tangent to the curve x*--y*—
—2xy=0 at the point (1,1).

638. Write the equations of the tangents and the normals to
the curve y=(x—1) (x—2) (x— 3) at the points of its intersection
with the x-axis.

639. Write the equations of the tangent and the normal to the
curve y*=4x"46xy at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola
xy=a’ (the segment lies between the coordinate axes) is divided
in two at the point of tangency.

641. Show that in the case of the astroid x*? y**=gq®*? the
segment of the tangent between the coordinate axes has a con-
stanl value equal to a.
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642. Show that the normals to the involute of the circle
x=a{cost+I{sint), y=a(sint—1fcost)

are tangents to the circle x*4y*=a’.

643. Find the angle at which the parabolas y=(x—2)* and
y=-—4 + 6x—x" inlersect.
644. At what angle do the parabolas y=x* and y=x' inter-
gect? ’

645. Show that the curves y=4x*4 2x—8 and y=x"—x + 10
are tangent to each other at the point (3,34). Will we have the
same thing at (—2,4)?

646. Show that the hyperbolas

wy=a*, x*—y=2>"

intersect at a right angle.

647. Given a parabola y*=4x. At the point (1,2) evaluate the
lengths of the segments of the subtangent, subnormal, tangent,
and normal.

648. Find the length of the segment of the subtangent of the
curve y—=2" at any point of it.

649. Show that in the equilaleral hyperbola x*—gy*=a* the
length of the normal at any point is equal to the radius vector
of this point.

650. Show that the length of the segment of the subnormal
in the hyperbola x*—y*=a" at any point isequal to the abscissa
ol this point.

651. Show that the segments of the sublangents of the ellipse

%:—+bi:-=l and the circle x*+y*=a" at points with the same

abscissas are equal. What procedure of construction of the tan-
gent to the ellipse follows from this?

6562. Find the length of the segment ot the tangent, the nor-
mal, the subtangent, and the subnormal of the cycloid

{ x=a(l—sin{),
y=a(l—cosft)

at an arbitrary point {=1,.

653. Find the angle between the tangent and the radius vector
of the point of tangency in the case of the logarithmic spiral
r = ae*®,

654. Find the angle between the tangent and the radius vec-

tor of the point of tangency in the case of the lemniscate
r* =a* cos 2¢.
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655. Find the lengths of the segments of the polar subtangent,
subnormal, tangent and normal, and also the angle between ihe
tangent and the radius vector of the point of tangency in the
case of the spiral of Archimedes

r=agp

at a point with polar angle ¢=2mn.
656. Find the lengths of the segments of the polar subtangent,
subnormal, tangent, and normal, and also the angle between the tan-

gent and the radius vector in the hyperbolic spiral r= Eg—at an

arbitrary point g¢=¢,; r=r,.
657. The law of motion of a point on the x-axis is

x=3f— 2,

Find the velocity of the point at {,=0, ¢{,=1, and {,=2 (x 1s
in centimetres and ¢ is in seconds).

658. Moving along the x-axis are two points that have the
following laws of motion: x=100-5f and x=1/2/*, where ¢ =0.
With what speed are these points receding from each other at
the time of encounter (x is in centimetres and { is in seconds)?

659. The end-points of a segment AB-=-5 m are sliding along
the coordinate axes OX and OY (Fig. 16). A is moving at 2 m/sec.

4
B r |
5 ,
/cz\
a 3 A X o] A x
Fig. 16 Fig. 17

What is the rate of motion of B when A is at a distance OA=3m
from the origin?

660*. The law of motion of a material point thrown up at an
angle a to the horizon with initial velocity v, (in the vertical
plane OXY in Fig. 17) is given by the formulas (air resistance is

31900
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disregarded):

gt*

x=uv, [ cosa, y=uotslna—-2—,

where ¢ is the time and g is the acceleration of gravity. Find the

trajectory of motion and the distance covered. Also determine the
speed of motion and its direction.

661. A point is in motion along a hyperbola y=%so that its

abscissa x increases uniformly at a rate of 1 unit per second.
What is the rate of change of its ordinate when the point passes
through (5,2)?

662. At what point of the parabola y* = 18x does the ordinate
increase at twice the rate of the abscissa?

663. One side of a rectangle, a= 10 cm, is of constant length,
while the other side, b, increases at a constant rale of 4 cm sec.
At what rate are the diagonal of the rectangle and its area increas-
ing when =30 cm?

664. The radius of a sphere is increasing at a uniform rate
of 5 cmjsec. At what rate are the area of the surface of the
sphere and the volume of the sphere increasing when the radius
becomes 50 cm?

665. A point is in motion along the spiral of Archimedes

r=ag

(a=10 cm) so that the angular velocity of rotation of its radius
vector is constant and equal to 6° per second. Delermine the rate
of elongation of the radius vector r when r=25 cm.

666. A nonhomogeneous rod AB is 12 ¢m long. The mass of a
part of it, AM, increases with the square of the distance of the
moving point, M from the end A and is 10 gm when AM=2cm.
Find the mass of the entire rod AB and the linear density at
any point M. What is the linear density of the rod at A and B?

Sec. 5. Derivatives of Higher Orders

1°. Definition of higher derivatives. A derivatfive of the second order, or
the second derivative, of the function y=f(x) is the derivative of its deriva.
tive; that is,
yl'!:(yf)!.

The second derivative may be denoted as

d*y
[{”. or (F' or f”(X].

2
If x=f(?) is the law of rectilinear motion of a point, then g—t—;i is the accel-
eration of this motion.
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Generally, the nth derivative of afunction y=7(x) is the derivative of
a derivative of order (n—1). For the nth derivative we use the notation

d"y

(n) or ==
¥ dx™’

or [ (x).

Example 1. Find the second derivative of the function

y=In (1 —x).
Solution. ¢ = ; 4= ;l)'—'—
ation. ¢ _l—x ' “\T—x _'(l__x)z'

2°. Leibniz rule. If the functions u=q (x) and v =1 (x) have derivatives
up o the ath order inclusive, then to evaluate the nth derivative of a prod-
uct of these functions we can use the Leibniz rule (or formula):

(HU) (n)zu(n)u+n_uﬂl-’n U'+ ﬂ(%}l ut=2a U'+ cas +RUU’I'-'.

3°. Higher-order derivatives of functions represented parametrically. If
{ x=q (1),
y=1y (1),

o aa . dy « d* "
then the derivatives Ye=771 Yxx=gpz » -+ 2N successively be calculated

by the formulas

y}=—y\jf—, yﬂn=(y;);=(if)t. U:;x*—- (y‘::)t and so lorth,
i ¢ ¢

For a second derivative we have the formula

* L (]
« _ %Yy — XYy

)

Y

Example 2. Find ¢, if

x=acost,
y="bsint,
Solution. We have
b sin t), :
‘=( )‘,=b cos:=—£cot L.
(acost)‘ —a sin ¢ a
and
b f b =1
_("’"&‘c"”);_"? Smit_ b
"~ (acosf), —asint atsin® ¢ *

3.
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A. Higher-Order Derivatives of Explicit Functions

In the examples that follow, find the second derivative of thi
given function.

667. y—=x"-+47x*—>5x + 4. 671. y=ln(x+]/a’-|—x’).
668. y=e*". 672. f(x)=(1+ x*)-arctan x.
669. y = sin® x. 673. y= (arcsin x)*.

670. y=Iny/ T+x. 674. y=acosh= .

675. Show that the function y=ﬁ%£ﬂ satisfies the diller
ential equation 14 y'*=-2yy".
676. Show that the function y=-;—x’e" satisfies the difleren

tial equation y"—2¢y +y=e”.

677. Show that the function y=C,e~*+ C,e~** satisfies th
equation y”43y" -2y=0 for all constants C, and C,.

678. Show that the function y=e®* sin5x satisfies the equa
tion y"—4y’ +29y=0.

679. Find gy, if y=x"—5x*+7x—2.

680. Find [''" (3), i [(x)=(2x—3)".

681. Find yV of the function y=In(1+x).

682. Find yV! of the function y= sin2x.

683. Show that the function y==e~*cos x satisfies the difler
ential equation y'V -4y =0.

684. Find [(0), f' (0), f7(0) and [ (O
if f(x)=e"sinx.

685. The equation of motion of a poiu
along the x-axis is

x =100 4 5¢—0.001#°.

Find the velocity and the acceleration ¢
the point for times £,=0, #,=1, an
t,=10.
686. A point M is in motion around
circle x*4y*=a* with constant angula
Fig. 18 velocily @. Find the law of motion of if
projection M, on the x-axis if at time =
the point is at M, (a, 0) (Fig. 18). Find the velocity and the ac
celeration of motion of M,.
What is the velocity and the acceleration of M, at the in
tial time and when it passes through the origin?
What are the maximum values of the absolute velocity and tt
absolute acceleration of M,?
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687. Find the nth derivative of the function y=(ax+ b)",
where n js a natural number,
688. Find the nth derivatives of the functions:

a) ”=1_—1-T€" and b) y=Vx.

68Y. Find the nth derivative of the functions:
|

a) y=sinx; e) =g}
b) y=rcos 2x; i) y=:ii :
c) y=e"*%; g) y=sin'x;

d) y=In(14+x); h) y=In(ax-+b).
690. Using the Leibniz rule, find y™, if:

x 1
a) y=x-e% d) y=—]fix_f;
b) y=x*.e=*% e) y=x"lnx.

c) y=(1—x*) cos x;

691. Find f™(0), if f(x)=1In l__'l

B. lligher-Order Derivatives of Functions Represented
Parametrically and of Implicit Functions

In the following problems find %.

692. a) [ x=Int¢, b) [ x=arctan?, «c) {x=arc sint
{ y=t% y=In(l+%; y=V1—=.

693. 2) X =acos t, {x:a(tw—smt),
y=asint; y=a(l—cost);
x=acos't, . x=a (sint—! cost),

b) y=asin®f; ) y=a(cost ¢ sint).
694 ){x:coth, 695, 3) x=arctant,
W] b ¥ b

y=sin"{, yzi't'
b) { xX= —ats ){x=lﬂt,

— gt 1

f=ts iy

8. Bind BE x=2¢"'cost,

- PG g B y=etsint.
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x=In(141"),
697. Find y,, for ¢ =0, if y=t,( T

698. Show that y (as a function of x) defined by the equa-

tions x=sinf,y=ae! ¥t - be-tV* for any constants a and b
satisfies the differential equation

.
(1—#) Tk e

In the following examples find y”'=%’, ‘
{x=sect, {xze“,
699. 701. .
y=tan{. y=1t-,
x=e"'cost, dny x=Inft,
700. —1 s 702. Find ——— if mn
y=e ' sint. dx y=t".

703. Knowing the function y=7f(x), find the derivatives x’,
x""" of the inverse function x=f""(y).
704. Find gy, if x* 4+ y*=1.

Solution. By the rule for diiferentiating a composite function we have

2x+2yy’ =0; whence y’ .. and i =— f_) =—-—E=x~‘-{-
X
Substituting the value of ', we finally get:

) 2
y"-_~_5 s L

y3 yd

In the following examples it 1s required to determine the
derivative y” of the function y=7F(x) represented implicitly.
705. y* = 2px.

706. X+ ¥ 1.
707. y=x+arctan y. ,
708. Having the equation y=x+Iny, find d", and gy—'%.
709. Find y” at the point (1,1) if
x4+ bxy+y'—2x+4+y—6=0,.
710. Find y” at (0,1) if
xt—xy+yt=1.
711. a) The function y is defined implicitly by the equation
X +2xy+y'—4ax+4-2y—2=0.
Find 5% at the point (1,1).

b) Find 2%, if x*+ 4 =a'.
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Sec. 6. Differentials of First and Higher Orders

1°. First-order differentlal. The differential (first-order) of a function
y=/[(x) is the principal part of its increment, which part is linear relative
to the increment Ax=dx of the independent variable x. The differential of a

4| N

Mizy

0 P Q X

Fig. 19

function is equal to the product of its derivative by the differential of the
independent variable

dy=y'dx,
whence

)
y _dx ¥
If MN is an arc of the graph of the function y=/f(x) (Fig. 19), MT is the
tangent at M (x, y) and
PQ=Ax=dx,

then the increment in the ordinate of the tangent

AT =dy
and the segment AN = Ay.

Example 1. Find the increment and the differential of the function
y=3x>—x.
Solution. First method:

Ay=3(x+ Ax)*— (x4 Ax) —3x* 4 x
or
Ay=(6x—1) Ax} 3 (Ax)%.
Hence,
dy=(6x—1) Ax=(6x—1) dx.
Second method:
y'=6x—1; dy=y' de=(6x—1)dx.

Example 2. Calculate Ay and dy of the function y=38x*—x for x=1
and Ax=0.01.

Solution. Ay=(6x—1)-Ax43(Ax)*=5-0.0143.(0.01)*=0.0503
and
dy = (6x— 1) Ax==5.0,01=0.0500.
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2°, Principal properties of differentials.
1) de=0, where c= const.
2) dx= Ax, where x is an independent variable.
3) d (cu)=cdu.
4) d(u + v)=du % dv.
5) d (uv)=udv -+ v du.
_vdu—udv

6) d (%)“‘_UT_ (0 # 0).
7) df (W) =" (u) du.

3°. Applying the differential to approximate calculations, If the increment
Ax of the argument x is small in absolute value, then the differential dy of the
function y=f(x) and the increment Ay of the function are approximately
equal:

Ay =~dy,
that is,
fle+Ax)—f () = [ (x) Ax,
whence
fx+Ax)y=f(x)+ [ (x)dx.

Example 3. By how much (approximately) does the side of a square change
if its area increases from 9 m® to 9.1 m??
Solution. 1f x is the area of the square and y is its side, then

y=Vx.

It is given that x=9 and Ax=0.1.
The increment Ay in the side of the square may be calculated approxi-
mately as follows:

1
2V9
4°. Higher-order differentials. A second-order differential is the differential
of a first-order differential:

:0.1==0.016 m.

Ay==dy=y' Ax=

d*y =d (dy).

We similarly define the differentials of the third and higher orders.
If y=f(x) and x is an independent variable, then

d*y =y (dx)*,
d*y=y'"" (dx)?,

d"y =y'"™ (dx)".
But if y={(u), where u=¢q (x), then

d*y =y (du)*+y' d'u,
d*y=y"" (du)* 3y du-d*u+y' d®u

and so forth. (Here the primes denote derivatives with respect fo u).

712. Find the increment Ay and the differential dy of the func-
tion y=>5x- x* for x=2 and Ax=0.001l.
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713. Without calculating the derivative, find
d(l—x*)

for x=1 and Ax=-—%.

714, The area of a square S with side x is given by S=ux".
Find the increment and the diflerential of this function and ex-
plain the geometric significance of the latter.

715. Give a geomelric inlerpretation of the increment and
differcntial of the following functions:

a) the area of a circle, S=mnx?

b) the volume of a cube, v=1x’.

716. Show that when Ax —0, the incrcment in the function
y=2*, corresponding to an increment Ax in x, is, for any x,
equivalent to the expression 2*In2 Ax.

717. For what value of x is the diflerential of the function
y = x* not equivalent to the increment in this function as Ax —0?

718. Has the function y=|x] a difierential for x=10?

719. Using the derivative, find the diflerential of the function

n b )
y=cosx for x= - and Ax-—zs—ﬁ.
720. Find the diflerential of the function

2
y=—=

Vx
for x=9 and Ax=—0.01.
721. Calculate the differential of the {unction

y=tanx

for x=-=1 and Ax=-t.
In the following problems find the differentials of the given
functions for arbitrary values of the argument and its increment.

1

722, Y= 727. y=xlInx—x.

X i
723, Y= - 728. y—]n!_l_x.
724, y=arc sin —::— ; 729. r =cot ¢ +cosec @.
725. y=arctan -;— : 730. s=arc tané'.
726, y=e*".

731 Find dy if x*+2xy—y*=a’.

Solution. Taking advantage of the invariancy of the form of a differential,
we obtain 2xdx 42 (y dx -+ x dy) —2y dy=0
Whence
d x+ydx.
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In the following examples find the differentials of the functions
defined implicitly.
732, (x+y)'2x+y) =1.
x

733. y=e v,
734. InV x*4-y* =arc tan —ﬁ— ;

735. Find dy at the point (1,2), if 4" —y=6x"
736. Find the approximate value of sin 31°.

Solution. Putting x=arc 30°=—'g- and Ax=arc 1°= 1—2-5 . from formula (1)

(see 3°) we have sin 31°=sin 30°+l—% cos 30°=0.500+0.017-;-V;=0.5i5.

737. Replacing the increment of the function by the differen-
tial, calculate approximately:

a) cos61°; d) In0.9;

b) tan 44°; e) arctan 1.08.

C) eo.l;

738. What will be the approximate increase in the volume of
a sphere if its radius R=15 cm increases by 2 mm?
739. Derive the approximate formula (for |Ax| that are small

compared to x)
Ax
Vix+Ax ~ VY+ Y ik

Using it, approximate V5, V17, V70, V 640.
740. Derive the approximate formula

3/ Ax
i/x—}-AxN |/x +E—d-l7—;i.:

and find approximate values for /10, }/70, 3/ 200.
741. Approximate the functions:

a) y=x'"—4x*+5x43 for x=1.03:

b) F)=VT1+x for x=0.2;
¢) f(x)= l/ :__:: for x=0.1;
d) y=e'-* for x=1.05.

742, Approximate tan 45°3'20".
743. Find the approximate value of arc sin 0.54.

744. Approximate 3/17.
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745. Using Ohm’'s law, I=£, show that a small change in

the current, due to a small change in the resistance, may be
found approximately by the formula

I
Al =— _E_AR‘

746. Show that, in determining the length of the radius, a
relative error of 1°/, results in a relative error of approximately
2°/, in calculating the area of a circle and the surface of a sphere.

747. Compute d’y, if y=cos bx.

Solution. d’y=y" (dx®) =— 25 cos 5x (dx}%.

748. u=)1—x*, find d’u.
749. y=arccos x, find d%.
750, y=sinxlnx, find d’y.
751, z:h;_x' find d*z.
752. z=x%"%, find d’z.

4
788, 2z = ".\Tx’ find d'z.

“

754, u=3 sin (2x +95), find d"u.
755, y=e* ¢ sin (x sin ), find d"y.

Sec. 7. Mean-Value Theorems

1°. Rolle’s theorem. If a function f(x) is continuous on the Interval
a<<x<b, has a derivative [’ (x) at every interior point of {lis interval, and

f (@) =F (b),
then the argument x has at least one value §, where a < §< b, such that
[ (B)=0.

2°. Lagrange’s theorem. If a function f(x) is continuous on the interval
a<<x=<<b and has a derivative at every interior point of this interval, then

f(0)—F (a) =(b—a) [’ (E),
where ¢ < § < b.

3°. Cauchy’s theorem. If the functions f (x) and F (x) are continuous on the
interval a<<x<{b and for a<x< b have derivatives that do nol vanish
simultaneously, and F (b) # F (a), then

&) —F@) _[' &
FO—F@ F@®'

where a < § < b.

756. Show that the function f(x)=x—x" on the intervals
—1l<<x<0 and 0<<x<1 satisfies the Rolle theorem. Find the
appropriate values of §.
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Solution. The function f (x) is continuous and differentiable for all values
of x, and f(—1)=f(0)=f(1)=0. Hence, the Rolle theorem is ap][:licable on
the intervals —1<x<0 and O<<x< 1. To find § we form the equation

f' (x)=1-—3x*=0. Whence §,=— ]/—é— Ey= ]/—;- where —1 <E <O
and 0 < §, < 1,

757. The function f(x)=)/(x—2)* takes on equal values
f(0)=f(4)=3 4 at the end-points of the interval [0.4]. Does
the Rolle theorem hold for this function on [0.4]?

758. Does the Rolle theorem hold for the function

f(x)=tanx
on the interval [0, n]?
759. Let

F(x)=x(x+ 1) (x +2) (x+3).
Show that the equation
['(x)=0
has three real roots.
760. The equation

e =1 |x

obviously has a root x=0. Show that this equation cannot have
any other real root,

761. Test whether the Lagrange theorem holds for the function
[(x)=x—x

on the interval [—2,1] and find the appropriate intermediate
value of E.

Solution. The function f (x)=x—x* is continuous and differentiable for
all values of x, and [’ (x)=1—3x* Whence, by the Lagrange formula, we
hive f(l)—~f(—2j=0—-6=[1—(—2)]f" (E), that is, f (§)=—2 Hence,
| —38'=—2 and £=41; the only suitable value is E=—1, for which the
inequality —2 < £ < | holds

762. Test the validity of the Lagrange theorem and find the
appropriate intermediate point & for the function f(x)=x*"* on
the interval [—1,1).

763. Given a segment of the parabola y=x" lying between

two points A4 (1,1) and B(3,9), find a point the tangent to which
is parallel to the chord AB.

764. Using the Lagrange theorem, prove the formula

sin (x 4 A) —sinx=h cos§,
where x<<E<<x+4h.
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765. a) For the funclions f(x)=x"-+2 and F(x)=x"—1 test
whether the Cauchy theorem holds on the interval [1,2] and
find §;

b) do the same with respect to f(x)=sinx and F(x)=cosx

on the interval [0, —;-

Sec. 8. Taylor’s Formula

If a function f(x) is continuous and has continuous derivatives up to the
(n—1)th order inclusive on the interval a<x<b (or b<<x<Ca), and there
1s a finite derivative [ (x) at each interior point of the interval, then Tay-
lor's formula

a)’ (x ai’

f(x)=[(a)+(&x—a) (a)-l-

[ (a)+

(x——-a)" :

i = M w““ A fim ),

where E=a4-0(x—a) and 0<B<], holds true on the interval.
In particular, when a—U we have (Maclaurin's formula)

H—l

F=F O+ O +5 I O+.. o o PO L @),
where £ =0x, 0<B<].

[ (a)+ .

766. Expand the polynomial [(x)=x'—2x"43x45 in posi-
tive integral powers of the binomial x—2.
Solution. [ (x) =3x*—4x+3; [ (x) =6x—4 ' (x)=6; f™ (x) =0
for n==4. Whence
F@=15L [ (=7, " (2)=8["(2) =6

Iherelore,

=242 4 3x+5= ( 2\: (x-—2)’

or
x—2x* 4+ 3x4+-5=114+7(x—2) 4+ 4(x—2)* -+ (x—2)%

767. Expand the function f(x)=e* in powers of x-+1 o the
term containing (x- 1),

Solution. [ (x)=¢* for all n, f("J(—1)=-e'-. Hence,

LGN G L ey
=_‘H+” =Sttt &

where E=—140(x41); 0<O<1,

768. Expand the function f(x)=Inx in powers of x—1 up to
the term with (x—1)"
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769. Expand f(x)=sinx in powers of x up to the term con-
taining x* and to the term containing x°.

770. Expand f(x)=e* in powers of ¥ up to the term contain-
ing £,
771. Show that sin(a-h) difiers from
sina-+hcosa

by not more than 1/2 A%,

772. Determine the origin of the approximate formulas:

a) Vl +x~ 1—!—%.1:—-;-::’, %)< 1,

b) /' 1+x~ 1+%x-—%x’, |x| <1
and evaluate their errors.

773. Evaluate the error in the formula

1

1 I,

774. Due to its own weight, a heavy suspended thread lies
in a catenary line y=a cosh%. Show that for small |x| the
shape of the thread is approximately expressed by the parabola

x2
y=a+z, .

775*. Show that for |x|<€a, to within (
approximate equality
= S/ axx
e ]/a—x ’

Sec. 9. The L’Hospital-Bernoulli Rule for Evaluating Indeterminate Forms

)2, we have the

1°. Evaluating the indeterminate forms% and g-. Let the single-valued

functions f(x) and ¢(x) be differentiable for 0<|x—a| <h; the derivative
of one of them does not vanish.

If f(x) and ¢ (x) are both infinitesimals or both infinites as x — a; that

. 0
is, if the quotient E’%' at x=a, is one of the indeterminate forms ) or

i , then >
= tim £ _lim ()
x>a @ (x) x—a q}" (x)

provided that the limit of the ratio of derivatives exists.
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The rule is also ?ppllcable when a=o00.
If the quotient %—,-({% again ylelds an indeterminate form, at the point

x=a, of one of the two above-mentioned types and f'(x) and @' (x) satisfy

all the requirements that have been stated for f(x) and @ (x), we can then
pass to the ratio of second derivatives, etc.

However, it should be borne in mind that the limit of the ratio q{—g—;
may exist, whereas the ratios of the derivatives do not tend to any limit
(see Example 809).

2°. Other indeterminate forms. To evaluate an indeterminate form like
0-00, transform the appropriate product f, (x)-f, (x}, where limf, (x) =0 and
X-»a

[ (%)

1 o)
or AP (the form «;).

x)

fa (x)
In the case of the indeterrﬁinate form oo —o0, one should transform the
appropriate difference f, (x)—/,(x) info the product f, (x) [I_f' (x)] and

limf, (¥) =0, into the quetient h(®) (the form @ (
x—a 1 0

fr (x)
first evaluate the indeterminate form [ﬂ; if 1lim i’—(-x—)=l, then we re-
fr(x) xa [1 (%)

duce the expression to the form

l_fl (x)

1 (X) 0
= (the form T
f] (x)

The indeterminate forms 1%, 0°, o are evaluated by first faking logas

rithms and then finding the limit of the logarithm of the power [/, (x)]/*'®
(which requires evaluating a form like Q. ).

In certain cases it is useful to combine the L'Hospital rule with the
finding of limits by elementary techniques.

Example 1. Compute

lim In x
x-0 cot x

=}
(form ;).

Solution. Applying the L'Hospital rule we have

' 2
lim J0X _jim (0% gy SO
£+0 cot x X0 (C ot x) =0 X

We get the indeferminafe form %; however, we do not need fo use the

L’Hospital rule, since

2
im S°X _ jim ﬂ:_".smx=|-0=0.

t=g X X0

We thus finally get

. Inx
lim =0,
z-»p CcOt x
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Example 2. Compute

" 1 1
ilﬂ(m—?) (form oo — o).

Reducing to a common denominator, we get

im (! 1 x*—sin® x 0
li o M 2 2
x50 (Slnﬂ X xz) X0 XESIEX (form 5 ).

Before applying the L'Hospital rule, we replace the denominator of the lat-
ter fraction by an equivalent infinitesimal (Ch. 1, Sec. 4) x®sin*x~x?, We

obtain
. l 1 i xﬂ_sinzx 0
lim b gy X ‘
x>0 (siu2 X x’) P (form L

The L'Hospital rule gives
lim ( 1 _ .-I—)-:lim 2x—sin 2x=1[m 2—2cos 2x

x—0 \ Sin2 x a2 X0 4x° X0 12x2

Then, in elementary fashion, we find
12
lim ( ! _-l)-_—lim I —cos2x__ pym 28in°x 1

x—p \Sin2 x x* x>0  Ox? yso Ox2 ~ 3 °

Example 3. Compute
3

lim (cos 2::)_"?2 (form 1%)
X0
Taking logarithms and applying the L'Hospital rule, we get

3

lim In (cos 2x) ** — lim dIncos2x _  eyim ta:1 2% _ —6
X0 X0 x? x+0 2X :

Hence, lim (cos 2x}’_‘;=r-e'°.
X=>0

Find the indicated limits of functions in the following exam-
ples.

v XP—2x8—x -2
116 Lif: x*—Tx+46

X —2x e x 2 s 3xt—4x—1] 1
U lim % o e D
Solution e A —Tx 16 o P 5 -

771, lim I 779. lim $202=1
X >0 X->0 —(C0S X
5 l—x

778, lim ———— . -
X1 l—sinf'-x 780. llmM .

2 xso X—8inx



Sec. 9] L'Hospital-Bernoulli Rule for Indeterminate Forms 81

> 2y—2tanx n
781. lim 252X . =
L esdx 785. lim "‘m
. ; tanx ’Homt'ﬁ;
782. | fanEx " . In(sin mx)
e 786. lim ——
x-i--;ex ) a0 insinx
783. lim —. 787. lim (1 — cos x) cot x.
{—a X =0

784. lim 2%

3 —_—
X—=>% '/x

Solution, lim (1 —cos x)cot xr= lim U —-—C(-)S X) ¢os oo lim (_11_35«\)‘1 =
X—0 xX—0 St x x>0 S x
= lim sin Yl
x>0 CO8 Y
y . k197 . n_.. @
788, lim (1 —x)lan = . 792. lim x" sin —, n>0.
X—1 z Y X
789. lim arc sin x cot x. 793. limInxln(x—1).
X=»0 r-»1
z n,— X 3 \ ____l___
790. lll_l:: (x"e™ %), n>0. 794, L“f} (.\.—I 7 _r) ‘

791. lim x sin % :

r>x

Solution, lim [ = . Ntim xinx—x41_
X1 A—1 Inx

A-%-}—l]lx-—] — 1
= lim — = lim :hml—'*r=§-.
X2t (5 A Ao —fr— X3 g L] 21—
Ina+ x“ 1) In x = i > -+

: 1 o
795. lim (x__3——x2__\__6) .

X =3

796. lim : SR ! |
)_-_,1[2(1—]/,\*) 3(1—Vx)]

; X n
Lo h”:t(cotx_i’cos x) :

¥ s
)

798. limx*,

x—=0
Solution. We  have x¥=py, Inyg=xInx: limlny=limxinx=
X—=>0 X0
1
CInxy . x .
z llm—1 = lxm—fzo. whence limy=1, that s, hma* =1,
>0 __ X0 __ X0 X0

X x2
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799. limx*, 804. lim x' =,
X+ =1
8 lanE
800. lim xi+1v %, 805. iim(tan’;“)
X0 X—1
1
801. lim x®in =, 806. lim (cot x)in =,
X—=>0 £—0
!ﬂ n
802. lim(1—x)""~. 807. lim(‘—)ta .,
X—1 X=»0
803. lim (1 4 x)*. 808. lim (cot x)*n #,
X=»0 X=»0
809. Prove that the limits of
i £ sin—:c
a) xl—lg sin x =0;

. X—sinx
b) :ﬂ: x+sinx !

cannot be found by the L’Hospital-Bernoulli rule. Find these
limits directly.

Fig. 20

810*. Show that the area of a circular segment with minor

central angle a, which has a chord AB=b and CD=*h (Fig. 20), is
approximately

2

with an arbitrarily small relative error when a—0,



Chapter 111

THE EXTREMA OF A FUNCTION AND THE GEOMETRIC
APPLICATIONS OF A DERIVATIVE

Sec. 1. The Extrema of a Function of One Argument

~ I°. Increase and decrease of tunctions. The lunction y=f(x) is called
increasing (decreasing) on some interval if, fo. any points x, and x, which
belong to this interval, from the inequality x,<x, we get the imequality / (x,)<<
<[(x,) (Fig 2la) {[f(x)>}(x,) (Fig. 21b)]. i f(x) is continuous on the
interval |a, b] and ["(x)>0 [f"(x)<0] for a< .<b, then [ (1) increases (de-
creases) on the interval [a, b).

A

y * ) Y * L
y=f(x) y=~(x) 4 I
F(,) fz,) :
0 i| Iz x O ‘II Iz x
(a) (b) 0 % g
Fig. 21 Fig. 22

In the simplest cases, the domain of definition of f(x) may be subdivid-
ed into a finite number of intervals of increase and decerease of the funec-
tion (intervals of monofonicity). These intervals are bounded by ciitic’
points x [where [’ (x)=0 or f'(x) does not exist].

Example 1. Test the following function for increase and decrease:

y=x*—2x-5.
Solution. We find the derivative
y=2—2=2(x—1).
Whence y'=0 for x=1. On a number scale we get two intervals of monot-
onicity: (—e0, 1) and (I, + ). From (I) we have: 1) if —o<x<l, then
y’'<0, and, hence, the funclion }(x) decreases in the inlerval (— w, 1); 2)

if l<x<< +4- o, then y'>0, and, hence, the function f(x) increases in the in-
terval (1, 4 w) (Fig. 22).
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Example 2. Determine the intervals of increase and decrease of the func-
tion

|
I=xx3-
Solution. Here, x=—2 is a discontinuity of the function and y'=
= —-—l-—<0 for x#£ —2, Hence, the function y decreases in the intervals

(12
—n<<Xx<—2 and —2<x<+} 0.
Example 3. Test the following function for increase or decrease:

Seolution Here,
y =xt—x (2)

Solving the equation x*—x*=0, we find the points x;=—1, 2,=0, x,=1
at which the derivative y' vanishes. Since y’ can change sign only when
passing through points at which it vanishes or becomes discontinuous (in the
given case, y’ has no discontinuities), the derivative in each of the iniervals
—w, —1), (—1, 0), (0,1) and (1, 4 o) retains its sign; for this reason, the
unction under investigation is monotonic in each of these intervals. To
determine in which of the indicated intervals the function increases and in
which it decreases, one has to determine the sign of the derivative in each
of the intervals, To determine what the sign of y is in the interval (— oo,
—1), it is sufficient to determine the sign of y' at some point of the inter-
val; for example, taking x=—2, we get from (2) y’'=12>0, hence, 4'>0 n
the interval (—oo, —1) and the function in this interval increases Similar-
ly, we find that y’<0 in the interval (—1, 0) (as a check, we can take

x=—2i), y'<<0 in the interval (0,1)

(here, we can use x=1/2) and #'>0 in the
interval (1, -+ o),

Thus, the function being tested in-
creases in the interval (— e, —1), decreases
in the interval (—1, 1) and again increases
in the interval (1, - o).

2°. Extremum of a function. II there
exists a two-sided neighbourhood of a point
xo such that for every point xs#x, of this
X neighbourhood we have the inequality

f(x)>f (%), then the point x, is called the
minimum point of the function py=Ff(x),
while the nuinber f(x,) is called the mini-
mum of the function y=/f(x). Similarly, if
for any point xs#x, of some neighbourhood of the point x,, the inequality
F(x)<f(x,) is Iulﬂllled, then x, is called the maximum point of the function
f(x), and f(x,) is the maximum of the function (Fig. 23). The nnnimum
point or maximum point of a function is its extremal point (bending point),
and the minimum or maximum of a function is called the exfremum of the
function. If x, is an extremal point of the function f(x), then f'(x,)=0, or
[’ (x,) does not exist (necessary condition for the existence of an extremum),
The converse is not true: points at which f’ (£)=0, or f’(x), does not exist
(critical points) are not necessarily extremal points of the function f(x).
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The sufficient conditions for the existence and absence of an extremum of a
continuous function f (x) are given by the following rules:

1. If there exists a neighbourhood (x,—8, x,+8) of a critical point x,
such that f"(x)>0 for x,—0<x<x, and [’ (x)<0 for x,<x<x,-+6, then x, is
the maximum point of the function [(x); and if ' (x)<0 for x;—d<x<x,
aflzd f (x)>0 for x,<x<x,+8, then x, is the minimum point of the function

X).

Finally, if there is some positive number 8 such that [’ (x) retains its
sign unchanged for 0<|x—x, |<8, then x, is not an exiremal point of the
function f (x).

2. I f"(x)=0 and ["(x,)<0, then x, is the maximum point;
if ['(x)=0 and [’(x)>0, then x, is the minimum point; but if /' (x)=0,
[ (x,) =0, and f'" (x,)#0, then the point x, is not an extremal point.

More generally: let the first of the derivatives (not equal to zero at the
point x,) of the function f(x) be of the order k. Then, if & is even, the
point x, 1s an extremal point, namely, the maximum point, if f% (x,)<0;
and it is the minimum point, if f® (x;)>0 But if 2 1s odd, then x, is not
:n extremal point.

Example 4. Find the extrema of the function

y=—=2x+3 VI;
Solution. Find the derivative
: 2*- _ 2__ (
Vx Vs
Equating the derivative y' to zero, we get:

/ kA 1=0.

y =2+ V x4 1) @)

Whenee, we find the critical point x,= —1, From formula (3) we have: if
x= — . -h, where h 1s a sufficiently small positive number, then y'>0; but
if x:=—1-+4h, then y'<0%). Hence, x,=—1 1s the maximum point of the

function y, and ymax=1.
Equating the denominator of the cxpression of ¢’ in (3) to zero, we get

o/ £=0;

whence we find the second critical point of the function x,=0, where there
s no derivalive ¢ For x==—h, we obviously have y'<0; for x="h we have
y'>0. Consequently, x,==0 is the mimmum point of the function y, and
ymin=0 (Fig. 24), It is also possible to test the behaviour of the function

at the point x=—1 by means of the second derivative
2
f=——.
3x V X
Here, i’ <0 for x,== —1 and, hence, x,= —1 is the maximum point of the
function.

3°. Greatest and least values. The least (greatest) value of a continuous
function f(x) on a given interval [a, b] is attained ecither at the critical
points of the function or at the end-points of the interval [a, b].

*y If it is difficuit to determine the sign ol the derivative y’, one can
calculate arithmetically by taking for /i asufficiently small positive number.
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Example 5. Find the greatest and least values of the tunction

y=x*—=3x+43

on the interval —1'[, <x<<2'/,.
Solution. Since

y' =3x*—3,
it follows that the critical points of the function y are x,=—1 and x,=1.
4
e s
ﬂg
4
I
I
|
|
|
{ |
|
I |
- . 4o S S
-1 0 X S N O P
2 ' 2
Fig. 24 Fig. 2

Comparing the values of the function at these points and the values of the
function at the end-points of the given interval

1 1. B\ g L
yi—h=sis=liy(—lg)=tg: s(27)=Vg.
we conclude (Fig. 25) that the function attains its least value, m=1, at

the point x=1 (at the minimum point), and the greatest value M=lli

8
at the point x=2'/, (at the right-hand end-point of the interval).

Determine the intervals of decrease and increase of the func-
tions:

811. y=1—4ax—x*

812, y=(x—2)"

813. y=(x+ 4)% — X

814. y=x*(x—3). - Y= e =16

X

815. y=._t_:§ .

1

8186. y=G—:T)_"

818. y=(x—3)V x.
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819. y=3—}/ x. 823. y=2e*'-4%,
820. y==x + sinx. 824. y=2x+a.
821. y=xInx. 0%

822. y=arc sin (1 +x). 826. y= -

Test the following functions for extrema:

826. y=x"+4x4-6.

Solution. We find the derivative of the given function, ¢ =2x44.
Equating y' to zero, we get the critical value of the argument x= —2.
Since y'<0 when x<—2, and y'>0 when x>—2, it follows that x=—2 is
the minimum point of the function, and ymin=2. We get the same result
by utilizing the sign of the second derivative at the critical point y"=2>0.

827. y=2+x—x".

828. y=x'—3x* 4+ 3x +2.

829. y=2x"-43x*— 12x--5.

Solution. We find the derivative
y' =6x*4+6x—12=6 (x*4 x—2).

Equating the derivative y' to zero, we get the critical points x,= —2
and x,=1. To determine the nature of the extremum, we calculate the
second derivative y"=6(2x41). Since ¢ (—2)<0, it follows that x,= —2
is the maximum point of the function y, and ymax=25. Similarly, we have

¥ (1)>0; therefore, x,=1 is the minimum point of the function y and
Ymin = —2,

830. y=x"(x—12)".

840, y=2cos = 43 cos =,
831. y=x(x—1)* (x—2)". . z + 3

832. y=;,£_i-_-§. 841. y=x—In (1 + x).
833, y=X"2+2 842. y=xInx.

834. y=(x_2)x(,8"‘t). 843, y==xIn'x.

835. y“‘,?pTli"x_a)' 844, y=cosh x.

830. y=][,:ﬂ' 845. y=xe”.

. y=37,:?4' 846. y=x"e~",

838. y=/ (@ —1J'. 847. y==.

839. y~=2 sin2x 4 sin 4x. 848. y=x—arctan x,

Determine the least and greatest values of the functions on the
indicated intervals (if the interval is not given, determine the
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greatest and least values of the function throughout the domain
of definition).

849. y=ﬁ_‘?. 853. y==x* on the interval [—1,3].
850. y=) x(10—x). 854. y=2x"4-3x*—12x+1
851. y=sin®*x -+ cos*x, a) on the interval [—1,6];

b) on the interval [—10,12].
852, y=arccos x.

855. Show that for positive values of x we have the inequality
X -} % =2.

856. Determine the coefficients p and ¢ of the quadratic tri-
nomial y=x*+px-+q so that this trinomial should have a min-
imum y=3 when x=1. Explain the result in geometrical terms.

8567. Prove the inequality

e*>1-4+x when x =0,

Bolutlon. Consider the function
f (%) =e* — (1 4-x).

II“? the usual way we find that this function has a single minimum f(0)=0.
ence,
f(x)>f(0) when x #0,
and so ¢* > 1+x when x#0,

as we set out to prove.

Prove the inéqualitlesz

858. x—§<sinx<x when x>0,
859. cosx>1——’-§ when x=0.
860. x——-’-;<lr1(l +x)<x when x>0.

861. Separate a given positive number a into two summands
such that their product is the greatast possible.

862. Bend a piece of wire of length [ into a rectangle so that
the area of the latter is greatest.

863. What right triangle of given perimeter 2p has the great-
est area?

864. It is required to build a rectangular playground so that
it should have a wire net on three sides and a long stone wall
on the fourth. What is the optimum (in the sense of area) shape
of the playground if ! metres of wire netting are available?
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865. It is required to make an open rectangular box of greatest
capacity out of a square sheet of cardboard with side a by cutting
squares at each of the angles and bending up the ends of the
resulting cross-like figure.

866. An open tank with a square base must have a capacity
of v litres. What size will it be if the least amount of tin is used?

867. Which cylinder of a given volume has the least overall
surface?

868. In agiven sphere inscribe a cylinder with the greatest volume.

869. In a given sphere inscribe a cylinder having the greatest
lateral surface,

870. In a given sphere inscribe a cone with the greatest volume.

871. Inscribe in a given sphere a right circular cone with the
greatest lateral surface.

872. About a given cylinder circumscribe a right cone of least
volume (the planes and centres of their circular bases coincide).

873. Which of the cones circumscribed about a given sphere
has the least volume?

874. A sheet of tin of width @ has to be bent into an open
cylindrical channel (Fig. 26). What should the ceniral angle ¢ be
so that the channel will have maximum capacity?

D C

N

0
\ 0
4 50 \ le- (@ —ad
0777 '
]

Fig. 26 Fig. 27

875. Out of a circular sheet cut a sector such that when made
into a funnel it will have the greatest possible capacity.

876. An open vessel consists of a cylinder with a hemisphere
at the boftom; the walls are of constant thickness. What will the
dimensions of the vessel be if a minimum of material is used for
a given capacity?

877. Determine the least height h=0B of the door of a ver-
tical tower ABCD so that this door can pass a rigid rod MN of
length [, the end of which, M, slides along a horizontal straight
iine AB. The width of the tower is d <<! (Fig. 27).
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878. A point M, (x,, y,) lies in the first quadrant of a coordi-
nate plane. Draw a straight line through this point so that the
triangle which it forms with the positive semi-axes is of least area.

879. Inscribe in a given ellipse a rectangle of largest area with
sides parallel to the axes of the ellipse.

880. Inscribe a rectangle of maximum area in a segment of
the parabola * =2px cut off by the straight line x=2a.

881. On the curve y=irna find a point at which the tangent

forms with the x-axis the greatest (in absolute value) angle.

882. A messenger leaving A on one side of a river has to get
to B on the other side. Knowing that the velocity atong the bank
is k& times that on the water, determine the angle at which the
messenger has to cross the river so as to reach B in the shortest
possible time. The width of the river is £ and the distance be-
tween A and B along the bank is d.

883. On a straight line AB=a connecting two sources of light A
(of intensity p) and B (of intensity g), find the point M that
rcceives least light (the intensity of illumination is inversely pro-
portional to the square of the distance from the light source).

884. A lamp is suspended above the centre of a round table
of radius r. At what distance should the lamp be above the table
so that an object on the edge of the table will get the greatest
illumination? (The intensity of illumination isdirecily proportion-
al to the cosine of the angle of incidence of the light rays and
is inversely proportional to the square of the distance from the
light source.)

885. It is required to cut a beam of rectangular cross-section
ont of a round log of diameter d. What should the width x and

the height y be of this cross-section
Z so that the beam will offer maximum
resistance a) to compression and b) to

p bending?
y. z -I Note. The resistance of a beam to compres-
B sion is proportional to the area of its cross-
a—% section, to bending—to the product of the
width of the cross-section by the square of

q its height.
Fig. 1 886. A homogeneous rod AB, which

can rotate about a point A (Fig. 28),
is carrying a load Q kilograms at a distance of a cm from A
and is held in equilibrium by a vertical force P applied to the
free end B of the rod. A linear centimetre of the rod weighs
g kilograms. Determine the length of the rod x so that the force P
should be least, and find P .
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e

887*. The centres of three elastic spheres A, B, C are situaled
on a single straight line. Sphere A of mass M moving with ve-
locity v strikes B, which, having acquired a certain velocity,
strikes C of mass m. What mass should B have so that C will
have the greatest possible velocity?

888. N identical electric cells can be formed into a batter
in different ways by combining n cells in series and then combin-

ing the resulting groups (the number of groups is i:- in par-
allel. The current supplied by this battery is given by the formula

J— Nné
 NR--n?’

where & is the electromotive force of one cell, r is its internal
resistance, and R is its external resistance.

For what value of n will the batiery produce the greatest
current?

889. Determine the diameter y of a circular opening in the
body of a dam for which the discharge of water per second Q

will be greatest, if Q=cy Vh—y, where h is the depth of the
lowest point of the opening (& and the empirical coefficient ¢ are
constant).

890. If x,, x,, ..., x, are the results of measurements of equal
precision of a quantity x, then its most probable value will be
that for which the sum of the squares of the errors

n
0= (x—x;)’
i=1

is of least value (the principle of least squares).

Prove that the most probable value of x is the arithmetic mean
of the measurements.

Sec. 2. The Direction of Concavity. Points of Inflection

1°. The concavity of the graph of a function. We say that the graph of a
differentiable function y=f(x) is concave down in the interval (a,b) [concave
up in the interval (a,.b;)] il for a < x < b the arc of the curve is below (or
for @; < x < b,, above) the tangent drawn at any point of the interval (a,b)
or of the interval (a,,b,)] (Fig. 29). A sufficient condition for the concavity
downwards (upwards) of a graph y=f (x) is that the following inequality be-
fulfilled in the appropriate interval:

' () <0 [[" (x) > 0).

2°, Points of Inflection. A point [x,, f(x,)] at which the direction of con-
cavity 2§:f the graph of some function c‘i'mnges is called a point of inflection
(Fig. 29).
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For the abscissa of the point of inflection x, of the graph of a function
y=[f(x) there is no second derivative [’ (x,)=0 or f"(x,). Points at which
[’ (x)y=0 or f"(x) does not exist are called crifical points of the second kind.
The critical point of the second kind x, is the abscissa of the point of inflec-
tion il f"(x) retains constant signs in the intervals x,—0 <x<x, and

X, < X < x,-+68, where 8 is some posi-

y‘ tive number; provided these signs are
opposite. And it is not a point of

inflection if the signs of [’ (x) are the
same in the above-indicated intervals.

Example 1, Determine the inter-
vals of concavity and convexity and

also the points of inflection of the
Gaussian curve

y=e"*
Solution. We have
Y = —2xe™*

and

Y =(4x2—2) e~ *,

Equating the second derivative y* to zero, we find the critical points of tHe
second kind

1

1
X, =——— and =— ="
! vz 0 RT3

These points divide the number scale —oe < x< - o0 into three intervals:
1 (—o, x), II(x, %), and 1II (x,, + o). The signs of ¢ will be, respec-

—
0 = i —— =2 0 X
FA V2
Fig. 30 Fig. 3l
tively, +, —, 4+ (this is obvious if, for example, we take one Point in each

of the intervals and substitute the corresponding values of x into y°) Therefore:

1
1) the curve is concave up when —oo< ¥ < — ﬁ and -—1-—<x<+oo; 2) the

V2

curve 1s concave down when——; <X <L_. The points (il- —-}-:) are

Ve Ve
points of inflection (Fiﬁ' 30).
It will be noted that due to the symmetry of the Gaussian curve about

the y-axis, it would be sufficient to investigate the sign of the concavity of
this curve on the semiaxis 0 < x < - oo alone.



See. 3] Asymptotes 93

Example 2. Find the points of inflection of the graph of the function

y=‘|3/x+2.
Solution, We have:
§
2 S —2
=—— X 2 —_——— 1
Y g(+) 9?&?@% (H

It is obvious that y" does not vanish anywhere.

Equating to zero the denominator of the fraction on the right of (1), we
find that y” does not exist for x=—2. Since " > 0 for x < —2 and y"<0 for
x>—2, it follows that (—2,0) is the point of inflection (Fig. 31). The tan-
gent al this point is parallel to the axis of ordinates, since the first derivative ¢’
is infimte at x=—2.

Find the intervals of concavity and the points of inflection
of the graphs of the following functions:

891. y=x"—6x*412x + 4, 896. y=cosx.

892. y=(x+1)% 897. y=x—sinx.
§93. yz-H_%. 898. y=x"Inux.

894, yzﬁ. 899. y=arctanx—ux.
895. y=/ 4x"—12x. 900. y=(1 + x") e~

Sec. 3. Asymptotes

1°. Definition. If a point (x,y) is in continuous motion along a curve
y=—=f (x) in such a way that at least one of its coordinates approaches infinity
(and at the same time the distance of the point from some straight line tends
{o zero), then this straight line is called an asymplote of the curve.
2°. Vertical asympiotes. If there is a number a such that
lim f(v) = % o0,

X >

then the straight line x=a is an asywiptote (vertical asymptote).
3° Inclined asymptotes, If there are limits

lim E-g—)-zk,
X ~» 4 o0
and
lim [f(x)—k,x] =8,

X+

then the straight line y==Fk;x| b, will be an asymptote (a righ! inclined
asymptote or, when k2, =0, a right horizontal asymptote),
If there are limits
flx)

im D g
=&
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and
lim [f (x)—kyx] =b,

X—p=w

then the straight line y=#k,x+ b, is an asymptote (a left inclined asymptote

or, when k,=0, a left horizontal asymptote). The graph of the function y=f (x)

(we assume the function is single-valued) cannot have more than one right

(inclined or horizontal) and more than one left (inclined or horizontal) asymptote.
Example 1. Find the asymptotes of the curve

Solution. Equating the denominator to zero, we get two vertical asyinp-
lotes:

x=—1 and x=1.

We seek the inclined asymptotes. For x — | oo we obtain

Y , x*
k= lim == lim ———e=1,
xs>ta X X=>+aoy }/-1-2_1
2 __ 2=
b,== lim (y—x)=1lim X xVx 1—-0,
Xt x x>+ Vx2—1

/(
\-_
TR
*
e -
Ll Ll
\:
N

&Q}/
/s
7/

\
SFAN
J\\@\

o
/
N\

N

<
TR TR RRRARR S
/
\
~ WLLLILN L,

|
=K

Y

Fig. 32

hence, the straight line y=x is the right asymptote. Similarly, whenx — —o»,
we have

ky= llm L=—y;
x>=-o %
by= lim (y+ x)=0.

X->—

Thus, the left asymptote is y= —x (Fig. 32). Testing a curve for asymp-
totes is simplified if we take into consideration the symmetry of the curve.
Example 2. Find the asymptotes of the curve

y=x-+Iinx.
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Solution. Since

lim y= —o0,
X->40

the straight line x=0 is a vertical asymptote (lower). Let us now test the
curve only for the inclined right asymptote (since x > 0).
We have:

k= lim ZL=1,
x++m X

b= lim (y—x)= lim Inx= 0.
X+ ® X++w

Hence, there is no inclined asymptote.

If a curve is represented by the parametric equations x=¢ (), y=1v (f),
then we first test to find out whether there are any values of the parameter ¢
for which one of the functions ¢ (f) or ¥ (f) becomes infinite, while the other
remains finite. When @ (f;)=o and ¥ ({,)=c, the curve has a horizontal
asymptote y=c. When { ({;))=o and ¢ (f{,)=c¢, the curve has a vertical
asymptote xr=c.

It @ (te) =" (t)=c0 and
V)

tim L9 _ ks tim [y (9 — ko (0] =,
S F S I

then the curve has an inchined asymptote y=kx+ b,

If the curve is represenied by a polar equation r=f(g), then we can
find its asymptotes by tlie preceding rule after transforming the equation of
the curve to the parametric form by the formulas x=rcos@=F () cos ¢;
y=rsingp=Ff(¢)sin g,

Find the asymplotes of the following curves:
2

| X
901. ymm;. 908. y= —QFW.
902. y:E,—_:TH. 909. y=e-*42.
903. y= 3. 910, y=1——.
x* k4
904. Y=%79- 911, y=e*.
905. y=) x"—1. 912. y=5i';x.
906. y=ﬁ-3. 913. y=In(l4-x).
907. y=-‘;‘izi_—‘-l-. 014, x=t; y—=1+2arctant.

915. Find the asymptote of the hyperbolic spiral r=—%~.
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Sec. 4. Graphing Functions by Characteristic Points

[n constructing the graph of a function, first find its domain of deflinition
and then determine the behaviour of the function on the boundary of this
domain, It is also useful to note any peculiarities of the function (il there
are any), such as symmetry,J)eriodicity, constancy of sign, monotonicity, ete.

Then find any points of discontinuity, bending points, points of inflection,
asymptotes, etc, These elements help to determine the general nature of the
graph of the function and to obtain a mathematically carrect outline of it.

Example 1. Construct the graph of the function

y= X
Vx’—l
Solution. a) The function exists everywhere except at the points r= 41.
The function is odd, and therefore the graph is symmetric about the point

O (0, 0). This simplifies construction of the graph

b) The discontinuities are x=—1 and x=1, and lim y= 4+ o and
x—=140

lim y= +oo; hence, the straight lines x= 41 are vertical asymptotes of the
X>—-140
graph,
¢) We seck inclined asymptotes, and find
k,= lim i:o,
x—>+=m X

by= 1lim y==oco0,
X >+

thus, there is no right asymptote. From the symmetry of the curve it follows
that there is no left-hand asymptote either.

d) We find the critical points of the first and second kinds, that is,
Fomts at which the first (or, respectively, the second) derivative ol the given
unction vanishes or does not exist.

We have: ,
- x2—-3 )
Y=
, y=—220=%) @

9 /=1y '

The derivatives y' and y” are nonexistent only at x= 41, that is, only at
points where the function y itsell does mot exist; and so the critical points
are only those at which fy' and y" vanish.

From (1) and (2) it tollows that

y'=0 when x=4 V3,
=0 when x=0 and x= 43.

Thus, y’ retains a constant sign in each of the intervals (—o, — V3),
(—V3, —1), (=1, ), (1, ¥3) and (V'3, + ), and y"—in each of the
intervals (—ow, —3), (—3, —1), (—1, 0), (0, 1), (1, 3) and (3, + ).

To determine the signs of y’ (or, respectively, ¥”) in each of the indicated
intervals, it is suificient to determine the sign of y’ (or y*) at some one point
of each of these intervals,
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It is convenient to tabulate the results of such an investigation (Table 1),
calculating also the ordinates of the characteristic points of the graph of the
function. It will be noted that due to the oddness of the function y, it is
enough to calculate only for x=0; the left-hand half of the graph is con-
structed by the principle of odd symmetry,

Table I
X 0 (0, 1) (1, V3V 3=173[(V'3,3)| 3 |3 +w)
LA
tf 0 — + oo + r QEI-JT +- 1.5 -+
exist
" non- =
il 0 _ exist + & = 0
; Function Function Function | pgint | Function
Con- p?;f“l decreases, [pyoeon.| decieases, Min. increases; ?,f increases;
clu- | yyflec- | €raph is Gnauit graph 1s puint graph inflec- |, grd!)h
sions | qion | toncave | concave is Loncave | 49y |IS concave
down up up down

e) Using the results of the investigation, we comsiruct the graph of the
function (Fig 33).

|
*3‘_' -3_1—

4_ 1900
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Example 2. Graph the function

Solution. a) The domain of definition of the function is 0 < x <+ .
b) There are no discontinuities in the domain of definition, but as we
approach the boundary point (x=0) of the domain of definition we have
limy=lim MX__ &
X0 x—+4 X

Hence, the straight line x=0 (ordinate axis) is a vertical asymptote.
¢) We seek the right asymptote (there is no left asymptote, since x can-
not tend to —oo):

k= lim Ly

Xx»>4+m X

X =>4+ ®

The right asymptote is the axis of abscissas: y=0.
d) We find the critical points; and have

, l—Inx
_— x: '
2lnx—3
Y= ¥ ’

g’ and 4" exist at all points of the domain of definition of the function and
y'=0 when Inx=1, that is, when x=e;

' =0 when In x==%. that is, when x—¢*".

We form a table, including the characteristic points (Table II). In addition
o the characteristic points it is useful to find the points of intersection of

Y l Ilnz
="
-~ ——
0 . e ez X
Fig. 34

the curve wilh the coordinate axes. Putting y=0, we find x=1 (the point
of intersection of the curve with the axis of abscissas); the curve does not
intersect the axis of ordinates

e) Utilizing the results of investigation, we construct the graph of the
tunction (Fig. 34).
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Graph the following functions and determine for each function

its domain of definition, discontinuities, extremal points,

inter-

vals of increase and decrease, points of inflection of its graph,
the direction of concavity, and also the asymptotes.

916. y=x"—3x"

017, y=2=X

018. y=(x—1)" (x4 2).
919. y____(x——2);(x+4)_
820, y=L0

921. y::'tz:ixl“l'Q
922, y=x'x_3

923, y="17

024, y=x'+4 2

925. y= 1

026, y=—"

927. y:%&r

928. y_—?;:;

929, y=—".

930. y-—-ml—-s_—:;;—).

931, y=211

932. y=]/—.1-6+ Vi —x.
933, y=Y81x—V8—x.
934. y=xV x4 3.
935. y=V) x'— 3.
936, y= i/ T—x".
937. y=y/1—x°.

838.

Yy=2+42—3 ’f/(x +1)%.

939. y=3 x+1—p/ x—1.
940. y=y/ (x+4'—y (x—4?
941, y=}/ (x—2)° (2 +v/ (x—4)!
042, y=
4 4 —x2
8
043, y=—0H
43. ¢y YTy
044, y= =
x*—1
945. y= £
V (x—2)
046. y=xe™".
947. y—(a+‘f-)e?
848, p=e=¥=l
949, y=(2+x*)e "
950, y=2|x|—x"
Inx
851, y=—=
5l. vy Vo
952. y="7In=
953. y=r1—
954, y=(x+ DIn*(x+ 1)
955. y=]n(x!—])"]—“—2‘- I
956. y=In V*zt]—l
957. y=In(l 4-e~%).
1
958. y=1In (3—1—7).
929. y=sinx+ cos x,
960. y=sin x+ 232,
961. y=cos x—cos’x,
962. y=sin’® x 4- cos’ x.
}
963, y=smx+cusx'
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Curvature 101

Sec, 5] Differential of an
sin x
964. y= -
sin (x+74—)
965. y = sinx-sin 2x.
966. y = cos x.cos 2x.
967. y=x-+ sinx. .
968. y=arc sin (1 — )/ x°).
69. - IJIF S X .
? y Vi—x
970. y=2x—1anx.
971. y=xarctanx.
972. y=xarctan %when x =0
and y=0 when x=0.
973. y=x—2arccot x.
974. y=%+arc tan x.
975. y=Insinx.

976. y= arccosh (x —i——i) ;
977. y=e'inx,
978. Y= earc sin V_E.
979. == earc ianx_
98). y=Insinx,

b1 X
981. y=Intan (7'——5) .
982. y=Inx—arctanx.
983. y = cos x— In cos x.

981.

985.
986.

987.

y=arc tan (In x).
y=arcsin ln (x* + 1).

y=x".
1

y=x*.

A good exercise is to graph the funclions indicated in Exame
ples 826-848.
Conslruct the graphs of ihe following functions represented
parametrically.

088.
989.
990.
991.
992.

Sec. 5. Differential of an Arc.

x=1*—2t, y=:{*+42¢L.
x=aqcos'tl, y=asint (a>0).
x=tle', y=te '
x=1(+{et, y=24e?

x=a (sinh{—1),

Curvature

y—a(cosh{—1) (a>0).

1°. Differential of an arc. The ditferential of an arc s of a plane curve

represented by

the formula

b) x=[,(y), then ds= ]/l-i—(d't) dy;
:
)+ (i) 4

€) x=9({), y="9(f), then ds= l/(.??

VFI+F;
d) F(x, y)=0, then ds= - :

an cquation in Cartesian coordinates x and y is expressed by

ds = V (dx)* + (dy)*;
here, if the equation of the curve i1s of the form

a) y=[(x), then ds = ]/l-l—(d”)

dx

Ful

VF + F

R

~dy,
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Denoting by @ the angle formed by the tangent (in the direction of
increasing arc of the curve s) with the positive x-direction, we get

cosa—d't
ds’

. dy
SN =—.

ds

In polar coordinates,

ds= V {dry +(r dy)? = ]/r’ -|- (%)Edsp

Denoting by P the angle between the radius veclor of the point of the
curve and the tangent to the curve at this point, we have

dr
LOSﬁ*—Eg,
sinf’:::s"j—;p .

2°, Curvalure of a curve. The curvature K of a curve at one of 1its
points M is the limit of the ratio of the angle belween the posilive direc-
lions of the tangents at the points M and N of the curve (angle of contin-

S
gence) lo the length of the arc MN-=As when NV — M (Fig. 35), that s,
!(: ]l-”l .\U, dll

As »0 AS  ds’

where ¢ 1s the angle between the positive directions of the tangent at the
point M and the x-axis.

¥

M

A
7/1{0 /a:+cr -

Fig, 35

The radius of curvature R is the reciprocal of the absolute value of the
curvature, i. e.,

1
R=r=s.
|K|
The circle (K=7}, where a is the radius of the circle) and the straight

line (K=0y are lines of constant curvature.
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We have the following formulas for computing the curvature in rectan-
gular coordinates (accurate to within the sign):
1) if the curve is given by an equation explicitly, y={(x), then

=_;y:—-‘
(4 gyl
2) 1f the curve 1s given by an equation implicitly, F(x, y)==0, then

L L

E Xx ny F X
F yx Fyy Fy
F, F, 0

K

= (F'xz_l_IF;E)’h '

3) if the curve is represented by equations in parametric form, x=0q({),
Y=y (), then

xa y.l
_ xu Hnr
(x'2 g3’
where
x._tg ,_dy _dx . 'y
=@ YTw *Tay YTaE

In polar coordinates, when the curve is given by the equation r=f(p),
we have

r24-2r'2—rr"

e

wlere

r,__dr and EE
“ap M =a

3°, Circle of curvature. The circle of curvature (or osculating cirele) of a
curve at the pomt M s the limiting position of a circle drawn through M
and {wo other pomts of the curve, P and @, as P— M and Q —* M.

The radius of the aircle of curvature is equal to the radius of curvature,
and the centre of the circle of curvature (the centre of curvature) lies on the
normal to the curve drawn at the point M in the direction ol concavity of
the curve.

The coordinales X and ¥ of the centre of curvature of the curve are
computed from the formulas

PV 4 5 ol ) 1+y*
I;" 1 yﬂ ]

The evolute of a curve is the locus of the ceutres of curvature of the
curve.

If in the formulas for delermining the coordinates of the centre of curva-
ture we regard X and Y as the current coordinates of a point of the evo-
lute, then these formulas yield parametric equations of 1he evolute with
parameter x or y (or ¢, if the curve ilsell is represented by equations in
parametric form)

Example 1. Find the equation of the evolute of the parabola y =x*

Y=y
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Solution. X=—4x*, V= Eliminating the parameter x, we find

1 4 6x3
-

3
the equation of the evolute in explicit form, Y=%+3 (%—)2’.

The tnvolute of a curve is a curve for which the given curve is an
evolute.
The normal MC of the involute T, is a tangent to the evolute I,; the

length of the arc EE, of the evolute is equal to the corresponding increment

S

in the radius of curvature CC,=M,C,—MC;
that is why the involute I, is also called the
evolvent of the curve T, obtained by unwinding
a faut thread wound onto I, (Fig. 36), To each
evolute there corresponds an infinitude of invo-
lutes, which are related to different initial
lengths of thread.

4°, Vertices of a curve, The verfex of a curve
is a point of the curve at which the curvature
has a maximum or a minimum. To determine
the vertices of a curve, we form the expression
of the curvature K and find its exiremal points.
In place of the curvature K we can take the

radius of curvature R:—l- and scek its extremal

| K
points if the computations ar!e simpler in this case.
Fig. 36 Example 2. Find the vertex of the catenary

y=ua cosh %{a > 0).
Solution. Since y'=sinh% and y"=% cosh%, it follows that K=

=——1—— and, hence, Rzacosh’i. We have ﬁ:smh?—x—. Equating
a cosh? = 8 o "
a

the derivative ‘;—i- to zero, we get sinh 2—;%:0. whence we find the sole

critical point x=Q Computling the second derivative E}R'f and putting into

d*R 2 2
it the value x=0, we getd= e acosh?—— = —>0 Therefore,

x=0 is the minimum point of the radius of curvature (or oi the maximum

2

of curvature) of the catenary. The vertex of the catenary y=acosh—':l- is,
thus, the point A (0, a).

Find the difierential of the arc, and also the cosine and sine
of the angle formed, with the positive x-direction, by the tangent
lo each of the following curves:

993. x -l—y =a® (circle).
994, ,—{— 3'—1 (ellipse).
995 y —2px (parabola),



Sec. 5] Differential of an Arc. Curvature 105

096. x2/* |yt = a’ (astroid).
997. y—=acosh = = (catenary).

998. x=a(f—sin{); y=a(l—cos{) (cycloid).

999, x=acos't, y=asin’{ (astroid).

Find the differential of the arc, and also the cosine or sine
of the angle formed by the radius vector and the tangent to each
of the following curves:

1000, r==a@ (spiral of Archimedes).

1001. r=% (hyperbolic spiral).
1002. r=a sec* % (parabola).

1003. r=acos® % 7 (cardioid).

1004, r =a® (logarithmic spiral).

1005. r*=a®cos2¢ (lemniscate).

Comipute the curvature of the given curves at the indicated
points:

1006. y=x*—4x*—18x" at the coordinate origin.

1007. x*+xy-+y*=3 at the point (1, I).

1008. ¥,4-U- =1 at the vertices A (a, 0) and B (0, b).

1009. x=1*, y=1¢' al the point (1, 1).

1010. r*=2a*cos 2¢ at the vertices =0 and ¢p=nm.

1011. At whal point of the parabola #*=8x is the curvature
equal to 0.128?

1012. Find the vertex of the curve y=e*.

Find the I'ddll of curvature (at any point) of the given lines:

1013. y—x (cubic parabola).

1014. ,—{—':’,-1 (ellipse).

1015. x::fg-—'“f,".

1016. x=acos'{; y=asin®{ (astroid).

1017, x=a(cost4 tsint); y=a(sint—+tgost) involute of a
circle).

1018. r=ac*® (logarithimic spiral).

1019. r=a{(l 4 cosp) (cardioid).

1020. Find the least value of the radius of curvature of the
parabola y*=2px.

1021. Prove that the radius of curvature of the catenary

y=acosh% is equal 1o a segment of the normal.

Compute the coordinates of the centre of curvature of the
given curves at the indicaled points:
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1022, xy=1 at the point (1, I).

1023. ay*=x' at the point (a, a).

Write the equations of the circles of curvature of the given
curves at the indicated points:

1024. y=x"'"—06x--10 at the point (3, 1).

1025. y=¢* at the point (0, 1).

Find the evolutes of the curves:

1026. y*=2px (parabola).

1027. %+-§;=1 (ellipse).

1028. Prove that the evolute of the cycloid

x=a(l—sinft), y=a(l—cos¥)

is a displaced cycloid.
1029. Prove that the evolute of the logarithmic spiral

r = qek?

is also a logarithmic spiral with the same pole.
1030. Show that the curve (lhe involute of a circle)

x=a(cost+4tsinf), y=a(sint—1ftcost)

is the mvolute of the circle x=acos{; y=asint,



Chapter 1V
INDEFINITE INTEGRALS

Sec. 1. Direct Integration

. Basic rules of integration.
1y If F'(x)==f(x), then

{Feyde=F i te,
where C is an arbitrary constant,
2) S Af () dx--A \ f(x)ydx, where A is a constant quantity.
3 (thmamran: (@l 7o ax.
4) 1i Sf(x) dy -~ F()--C and w-=q (), then
S F(uydu —=F (u)-i- C.
In particular,
g\f(m. by dx -—};F(ax | b) 1-C  (a.:0).

2°. Table of standard integrals.
Arl—l-l'

L. S\"dr—-”—_,ﬁ—[ -G, nt—1.

i1, S‘g\;-—-:ln]x]—i C

dx l ]
1I1. S.r'*’-i—a S ey 'trctan(—:- - C_-ﬂ-—r-arccot—:}‘i—c (a # 0).
dx 1 x—a
v ng_uz""g—u““—‘-kc (a # 0).
de 1 a-l—r]
Sa*—-x“_%mla +C (a #0).
8 ‘ ﬁ_ﬁ—ln]x-i—]fx’-}-al—]—c (a £ 0).
Vxrta
dx . X X
V1. swl/—a*—xz__ 1rc'=m—+C——-arccosT‘—+C (a > 0).
VIL S

a*dx =—: —~——|—C (a > 0); Se‘dx:e"-}-C.
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VIIL. Ssinxdx——cosx+c
IX. Scosxdx—-sinx—kc

X _tanx+C
X1 S sz =—cot xJ-C.
X1l m_ln tan—’+C—-]n|cosee y—cotx|+C.
X 111, Thx 2 o In tan(% I)I+C=1n|tana+secxl+0.

XIV. S sinh x dx = cosh x 4 C.
XV. Scnshxdx=sinhx+€.

dx
XVI. S‘ m:laﬂh x4 C.

dx
XVII. S m—-—- COthI-l-'c.

Example 1.
S (ax?+ bx+c) dx= S axldx + S ba dx+ S cdx=

3 2
=:aSx*dx—i—ngdx—i—cSdx:—-a%--[-b%—{-cx-l-c.

Applying the basic rules 1, 2, 3 and the formulas of integra-
tion, find the following mtegra]s

1031. § 5atxtdx. 1040. j Lok 1'/’,‘*_“'3’ dx.
) I %
1032. { (6x* +8x+3)dx. 041, jum L
1033. § x(x+ @) (x + ) ax. VV :
- 1042. J( a—F &
1034. { (@4 bx*)y dx. Var
1035. {1/ Zpxdx. 1043. { 25
1036. 5 1044, [ 2.
dx
1037. S(nx) " . 0 Vv

1038. j(a%-—x%)!dx. e

1039. \(Vx+1)(x~Vx+1)de. 1047, j Vete—-Vizy
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1048*. a) S tan® x dx; 1049. a) Scol-’ xdx,
b) | tanh®x dx. b) { coth® xdx.
1050. { 3%e*dx.

3°. Inlegration under the sign of the differential. Rule 4 considerably
expands the table of standard integrals: by virtue of this rule the table of
integrals holds true irrespective of whether the variable of integration is an
independent variable or a differentiable function.

Example 2.
dx
=\ (Ge—2 Edux——2=
| 7= =2 e
1 L)
e 2 (5x—2)? :
-—-g E‘u L dubfﬁ--—f-{-cz-s—]——i—cﬂ— V5x—-’ic
2 2

where we put u=5x—2. We took advaniage of Rule 4 andtabular integral 1.

x dx 1 d(x®) .
i ) Ve T e VTR

We implied e =x% and I.I"-L was made of Rule 4 and tabular integral V.

Example 4. 5 x2e*” dx = T S e*'d (&) = ; ¢X’ 4 C by virtue of Rule 4 and

Example 3.

tabular integral VII.

In examples 2, 3, and 4 we reduced the given integral to the following
form before making use of a tabular integral:

S flp () ¢" (x)dx= S [ (u) du, where u=q (x).

This type of {fransformation is called infegration under the differential sign.
Some common transformations of diferentials, which were used in Exam-
ples 2 and 3, are:

a) dx—-l—d(ax—l b) (@£ 0); b) xdx=%d(x2) and so on.

Using the basic rules and formulas of integration, find the following in-
tegrals:

1051%*, Sa‘f_f;. 1055. g‘”‘il‘; X.
1052*, ;?l-—_:—_?ﬂ'x. 1056. 5" +1

1053. S:i%g‘cx 1057. S’de.
1054, {22, 1058, (£l gy,
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1059. { (a4 2 ) dx.
1060*. S(x;‘_”,
1061, { 2%

l—y
1062, S Va— bxdx.
1063*.5

X
dx.
Vgl

1064. j mdx.

dx
1065. | =

dx
1066. TE—B"

dx
(a4 b)—(a—b) x*

(0<< b <a).
1068. S—‘idx.

1069. Sa—"_— dx.

1067.

1070. g V548 e

1071. { &

1072, | &

1073. S’

1074.

1075. | 221 4p
1076. (23 4.

1077. S—"ﬁ .

1078.
1079.
1080

1082.

1083.

1084.
1085.

S'V(l-y x5y |

1086.

1087.
1088.

1089.

1090.
1091.

1092.

1093.
1094.

1095.

1096.

1097.

52?ﬁ3

ax--b
S 2 2 | bzdx

[ xdx
Y Va—8
1081.

f arc sin x 4,
Ny 1—x2

X

are tan —
S_de
4 4 x? )

g X — V-.‘ut tan 2x

1 - 4x2

dx

dx.

S ae="* dx.

[ 4=

n(t V1t

S(e‘——e”) dt.

x —
S (e-u_ 1-¢ @

(ax __ bx)z
a*b*

X

)gdx.

dx.
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1098. S e* V a— be* dx. 1119, Stanxdx.
1099. (eg—}—l)?eﬁdx_ 1120. Scotxdx.
X
oo, { 4 1121. Scotmdx.
:3 1122.5 -
a X X
1101, SH £ tan .
== X
1102. S!__e_,.b_,dx, 1123. Stanl/
(103. 7‘"3‘__-1_ 1124, chot(x=+1)dx.
| —e* .
1125. S .
1104. Ssm (a-+bx)d sin x Cos X
p 08 = si i
1105 j S___dx 1126. g(oh, sin 2. dx.
6 ;
(106. S‘ o'mx—}—sm ax)* dx. 1127. Ssm 6x cosbxdx
cos ax
1107. s 1128. Ssm’ax '
1129. sin 3x
1108. S lgx) : Saqwm
1130. 5‘ Sin x cos v d
1109*, Ssm xdx. V cos? x—sui?
1110*. S cos? % dx 1131. SV] - 3 cos® 3 cos® x sin 2xdx.
tan® = Sk
111, { sec? (ax { b)dx. Lia2. S:;] 7 sec’ 3 dx
tan
1112, { cot* axdx 133, | Yty

1114.5‘3 I
“’5(5‘“ﬂ
(115. SWMH}

(116. Scjs‘fi,

1117. stm(l——x‘)dx.

1118,

j (smxlﬁ_ l)zdx.

2
1134 S““‘: X

sin? x

1135. S‘—*'Si—“"“dx.

cos? Jy

1136 (cos ax |-sin ax)’dx

sinax

cosec? 3x
1137. Sb

—a cot 3x

1138. S (2 sinh 5x—3 cosh bx) dx.
1139, Ssinh'xdx.
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1140, { 9% 1143, { tanh xdx.
141, {2, 1144. { coth xdx.
dx
1142. Ssinhxcush x"
Find the indefinite integrals:
1145. § x /5% dx. 1163. S 1
W1 CDSE-
1‘46.Smdx. €/1+lnx
x* 1164, J————dx
1147, Smdx. X
2 —— d
1148. § xe=*dx. 1165. jtan Vx—1 inl.
V 24 3x2
1149, 5'3 ' L2 dx. 1166. S':lf*;a
1150. Sf”ll dx. 1167. je“‘“*“ﬂ x—:u\(:wrx’H L ie.
1151. 1 X, Sin x-——Cos X
J Ve 1168. Ssmxﬂ—cwsx ’
1 —sin x N ox \2
11562. e _— (l—smﬁ) ;
tan 3x —cot 3x . X,
1153, (P . Sm%
dx
1154. len,x. 490, S
sec? x
MERA SV g O 1171. S (‘l*+"j,)dx
X dx
1156. f( 9x% |- 1)2;2.1_1' 1172. S n* x gin 2x dx.
1157. Sa‘“wsxdx 1173. ( h—3%
——Sx’
1158, ff/m-ldx' {47, S
xdx
hioR 5‘ Vie [175. 3 @ b)-l—[u~b) pz
1160. Stan’ axdx. 0<b<a).
161, { sin* 5 dx. 176, | - dx.
1162, { Secadx dx
Vi—tan® x 17, Ssinaxcosax'
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; 2rct sec x tan x
1178. Ssm (dwT-—-I-(p.)dt. 1185. jVsec’x-{»l
X
9. § i t1ge. [ o2
Sarc cos i
180, § . 1187. Sm
. —tanx 2 . | T_i_
1181 Se- sec* xdx {188, S]/n(xTJ[l:t -+ )dx.
1182. (%dx.
. V‘*’;S“‘” 1189. Sx’ cos (x° -+ 3)dx.
1183. S—”ﬁ fariva
T::::HL;S-: X 1190. [CBr'shn’lx dx.
84, | A
1184 g P s

Sec. 2. Integration by Substitution
1°. Change of variable in an indefinite integral. Putting
X = (L.

where ¢ is a new variable and ¢ is a continuously differentiable function, we
will have:

[readr={reme wa 0

The attempt is made to choose the function ¢ in such a way that the right
side of (1) becomes more convenienl for integration.

Example 1. Find

S X I/-a—l dx.

Solution. It is natural fo put t= ¥V x—1, whence x=¢24-1and dx= 2{ dt,
Hence,

x Vx—Tlde=\ 2+ 1)t.20dt =2\ (12 dt =
) | \

5 3
a =

“ 2 2 2 2 2
5 3 =] - -
=5 4104 C == x—1) 4+ —-(x—1)" +C.

Sometimes substilutions of the form

=@ (x)
are used.
Suppose we succceded in transforming the integrand f(x)dx to the form

f (x) dx =g (u) du, where u=g (x).
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If S g (u) du is known, that is,

(g@dui=rw+a,
then

{0 de=Flpn+e

Actually, we have already made use of this method in Sec. 1,3°
Examples 2, 3, 4 (Sec. 1) may be solved as follows:

Example 2. ¢y =5x—2; du=>bdx; dx:—é—du.

1
| du _ 1u® 2 VE S
=5 = F +C=+¢ V5x—2+C.

j‘ dx
l/ bx—2

bs| —|

Example 3. u=x* du=2xdx; xdxzd—-; .

xdr ! du ] —— 1 —
S V-l+x“=§,y1/l—+u’=§ in (u + ]fl—[—u‘HmC—E- in(x*4- V1+2) + C.
du

Example 4, u=x% du=23x*dx; x* dx=—-3- "

Sx’e"sdx=—:l¢’-5]e"du:—;—e“ +C=-31;e"’—i-C.

2°, Trigonometric substitutions,

1) If an integral contains the radical V a®*—x%, the usual thing 1s to put
x=asini; whence

Va2 —x2=acost.

9) i an integral contains the radical VY x*—a?, we put x—=uscct,
whence

Vx’—-—a’=a tant.

3) If an integral contains the radical V a?+a?, we put x=atan{; whence
Vx*+a’=asect.

It should be noted that trigonometric substitutions do not always turn
out to be advantageous,

It is sometimes more convenient to make use of hyperbolic substitutions,
which are similar to trigonometric substilutions (see Example 1209),

For more details about trigonometric and hyperbolic substitutions, see
Sec. 9.

Example 5. Find

j"l/'x“

2
2+ : dx.
X
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dt

cns®

j‘l/x3+1dx_“ Viantt4-1 dt S‘Rectcnszt
xt Ty =

tan® i cos2 ¢ sim2 ¢ (:05" t

_S dt ___Sﬁillzt-f-(.ﬁszt 4 cos i
T sinfcost ) sin?f-cos r:nst Sam?i

Solution. Put x==tani{. Therefore, dx=

-—-hlltan!—}—seci}-—————}C_qlnﬂanf»{ V1ijtanii|—
-"-]-/-—l—t-‘—;-:—%ll-{-{—czlnjx-{- Vx=+1j_'f’i *lie

1191. Applying the indicated substitutions, find the following
infegrals:

a)g V_ = x=%;
b)S d x=—Int,

e*-4+ 1"

C) Sx(ox —=3Yidx, bx*~3=t1;

¢ — {= sinx.
‘ , Vitemx'

Applying suitable substitutions, find the following integrals:

1192, { x(2x 4-5)" dx. 197, \%%‘_lili
1193, Q ”‘ - dx. 1198. \ ldx.

" dr '
1104, | —4° |

jxl/.'.h:—l-l (199, \‘ sin? x e
1195 gd_f J Veosw

L] V‘e-.:ll
1196. S‘l"";'“i". 1200*, 1'"17{1?{

Applying trigonometric substitutions, find the following in-
tegrals:

1201. 5ﬂ—, 1203. | Vo—d gy,
]—x X
X' dx i [ dx

1202. EV' e 1208, | 2.
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1205. j VEFT 1206*, 5"—““_
X ’ 2V a—xt

1207. (V' 1—¥dx
1208. Evaluate the inlegral

" dx
j Vii—3)
by means of the substitution x=sin*¢.
1209. Find
S Va* + x* dx,

by applying the hyperbolic substitution x=asinh¢.

Solution. We have: I/I:ziE Te=Va + a® sinh? {=a cosh ¢ and dx=a cosh ¢ d!,
Whence

S V o> +x2dx= S a cosh {-a cosh { dt =

2
= q* Scosh’tdt:a’jwdtz-a (-i sinh 2t+r)+C=

2 2\2
a!
= 3 (sinh { cosh £+ #) 4 C.

Since
3 8
sinh t=i. cosh { = ]/a X
a a
and
x+ Va4 x?

et =cosh ¢ 4-sinh { =

a
we finally get

e e
S V a® - x* dx=—-;— Vu“—}-a’—i—%ln (x4 Va‘—l—x’)-[—C,,
2
where C,:C—E,-,- Ina is a new arbitrary constant.

4

1210. Find
x*dx
S
putting x==acosh{,

Sec. 3. Integrotion by Parts

A formula for integration by parts. If u=q (x) and v =1 (x) are differen-
tiable functions, then

Sudu=uv—s v du.
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Example 1. Find

lenxdx,
. dx xt
Putting u=Inx, dv=xdx, we have du=?. v="5 Whence
*dx x? x*
lenxdx:-—lnx-—S——--—QJ r—-:l—+C.

Sometimes, to reduce a given integral to tabular form, one has to apply the

formula of integration by parts several times. In certain cases, integration

by parts yields an equation from which the desired integral is delermined.
Example 2. Find

S e* cos x dx.
We have

S e* cos x dx = S e*d (sin x) = e* sin x— S e sin x dx = ¢* sin x -

-+~ S e* d (cos x) == ¢* sin x --e* cus x—g e* cos xdx,
llence,
S e* cos xdx=-¢* sin x+e* cos x— g e* cos x dx,
whence

.
S e~ cus tdx:-_-%— (sin x 4-cos x} 4+ C,

Applying the formula of integration by parts, find the following
integrals:

1211, {Inxdx. 1221, { x sin x cos xda
1212. S arc lan x dx. 1222* { (x*+5x-+6) cos 2x dx.
1213. § arc sin xdx. 1223, { x*lnxdx.
1214. S xsin xdx. 1224. S In® x dx.
In A

1215.

|
1216. S

x cos 3xdx. 1225. S

1217. St 2% dx. 1227. Sxarctanxdx.
|
S

M

. 1226.

1218**. S x'e** dx. 1228.

1219*, S(x’-—?x-{—S)e"‘dx. 1229,

4

1220*, Sx’e-; dx. Lol
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1231. S“‘)“ X

sin?

1232. Se sin xdx.
1233. 53"‘ cos xdx.

1234. S e™* sin bx dx.
1235. 5 sin (In x) dx.

Applying various methods, find the following integrals:

1236. Sx‘e"‘zdx.
1237. Se""xdx.

1238. { (x*—2x--3) Inxdx.

F
1240, Sliz dr.

1241. Sm(i“)dx.
1242. { # arctan 3x dx.
1243. g x (arc tan x)* dx.
1244. S(arc sitt x)* dx.
1245, S"‘“’ SINE i

X2

1239. len‘“““dx

1246. T arc sin ]/7
Y V T—x

1247, \ xtan®2xdx.

)
1248. Y“‘Ex"
)

1249. \ cos® (In x) dx.
ok X
1250 o l)zdx.

dx
1251*. T )
1252*. (V@@ —x dx

1253*. { VA1 dx.

2dy
254*, | .
125 Voo

Sec. 4. Standard Integrals Containing a Quadratic Trinomial

1°. Integrals of the form

mx-n
Sax’—l— bx-+c

The principal calculation procedure is to reduce the quadratic trinomial to

the form

dx.

ax*4-bx+c=a (x4 k)* 41,

where & and [ are constants.

best to take the periect square ou
wing substitution may also be used:

rform the transformations in (1), it is
of the quadratic trinomial.

%x 4 b=t

If m=0, then, reducing the

quadratic trinomial to the form (1), we get

the tabular mtegra!s I or 1V (see Table).

The follo-
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Example 1.
dx .k dx —
= )
L d("“i‘) Lo —
=5 (x_£)=+ﬂ=-§-ﬂdrctanﬂ+c_
4 16 4 4

Ha:c tan +C
AT V 30

If ms 0, then from the numerator we can take the derivative 2ax-}+b
out of the quadratic trinomial

b
(20.\ 4 b) -+ (n-—'ﬂ-)

ax*-{ bx-f-¢ axt-lbx-¢ e
= . DL .
= 2uInffur ~I—b.x—]—c[—|—(n % )Sax‘-i-bc—}—c'
and thus we arrive at the integral discussed above.
Example 2.
- 1
(25— 1) =
x—1 S 2 2 .. 1 "
5 T dx = P —— dv = 5 In|x*—x—1|—
? I
d (x——) -
1 2 1 l 2%—1—V'5
S =_In|x*—~x—1|— — In s .
i ‘(x—'—“_é 7 EY7S 23-—|+V5'+C
'Y 2 ‘l'
2°, Integrals of the form j jfld.\:. The methods of calculation
Varxr¥bx+c

are similar to those analyzed above. The integral is finally reduced to tabu-
lar integral V, if a>0, and VI, if o« <O0.

Example 3.

de | dx | - sm""_a-w
Syfﬁ"mi_lfﬁgl/%_( 3)=“V"‘£ ‘ 5 '

B \""7
Example 4.
2 x+3 1 2x 42 dx
—.dx=-— _—dx 2 —— e =2
j V4212 2)Vetum+2 SV(x+l)’+l

=Vt +24+2ln(x+14+VPr+2x+2)+0.
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. By means of the in-

dx
3°. Integrals of the form —
i j (mx+n) Vax+bx+c

1
mx+n

verse substitution

these integrals are reduced to integrals of the form 2°,
Example 5. Find
dx

x+1)V 21

Solution. We put

x+1 =—i— ,
whence "
dx-— — F .
We have:
‘a _Ei_i
dx _ t? dt

—_—— - = __:____‘_.—_-'
G+ Vel Tl-l/(l_l)_H ! Vii—aifar

T sz V (- _,="Vlle“ gt Y gl

_ ] l—x+lf2(x=+1)|
Te==73 “‘ xF1 i

4°, Integrals of the formg V ax®+4-bx+-cdx. By taking the perfect square

out of the quaﬂratic trinomial, the given integral is reduced to one of the
following two basic integrals (sce examplcs 1252 and 1253):

.S Va*—-—a’dx—-—— Vraz-—;c?-l— -arc mn—-{ C;
(a>0}.
2) S V &+ A d,r=-;— Vﬁ-{-A—l—-‘%- In|x+ VEFXAa|+C.

Example 6.
S Vi—oxr—atde— S VIi—(F0rd(l+x)=
= ;—x YV 1—2x—x% 4-arc sin l]/—_'__;-l—(}'.
FFind the following integrals:
X
1255. { i 1257, (o

xdx
1256, Sm 1288, | =
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3x—2 dx
1259, | =" 1269, j ey
[‘r_l)z d l 70 " dx
Tk rax 4 S J—=1 VHar=3a’
xdx ) o dx
1261 {5t 271, |
1262. \ W - 1272. { VEToxTods
) Verax—2x?
1963 Y dx 1273. { Vi—xd
) l/x—dxz 1274. S Vi—x—x2dr.
1264 =
B oy e : x d
T pxtg 1275. \ 315 -
v = C ) v —4x2 -3
1265. | V_S'L;ngr. i
; B Sx | 1276. 3 sin? x—6 s x+ 120'.1'.
1266. | —= — . d. ! * eXdx
2 j Vi—x—x2 ) 1277. \ ﬁ'—'—i'?:'_i
1267. j - _2f___ de. ' S10 1 da
. '/52__2!6 2 1278 \ V-cwb’ X +deusy ';T.
1268. 5 s > ' In xdr
R AT . 5.\: Vi—tinx—Inte

Sec. 5. Integration of Rational Functions

1°. The method of undeiermined coefflcients. Integration of a rational
function, after taking out the whole part, reduces to integration of the proper
ralional fraction

P{(x)
70’ b

where P (x) and Q (x) are integral polynonnals, and the degree of the nume-
rator P (x) is lower than that of the denominator Q (x).

If
Q (X)=(x—a)*. . .(x—=D"

where a, ..., { are real distinct roots of the polynomigl Q (x), and a, ...,
A are natural numbers (root multiplicities), then decomposition of (1) into
partial fractions is justified:

P(x)y A, A, A,
Q (x)z':‘:—crz_'_(x—u}*_E e '+(.r—a)’+' "t
= Ll Lz Ll
.+X'—[+(x_l)=+'..+ml (2)
To calculate the undetermined coefficients A,, A,, ..., both sides of the

identity (2) are reduced to an integral form, and then the coefficients of
like powers of the variable x are equated (first method). These coeffi-
cients may likewise be delermined by putting [in equation (2) or 1n an equi-
valent equation] x equal to suitably chosen numbers (second method).
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Example 1, Find

xdx —7
S(x-—ll(x+l)'_ '

Solution. We have:
X A B B,

A , B
DG =1 i+ TGO

Whence
x=A(x+1Y-+B,(x—1) (x+ D+ B, (x—1), (3)
a) First method of determining the coeffictents. We rewrite identity (3) in

the form x=(44+B,)x*+(2A+B,) x+(A—B,—B,) Equating the coeffici-
cnts of identical powers of x, we get:

0=A+B,; 1=24+8, 0=A—B,—8,.

| ] 1
A=2: Bi=—7: By=3.

4 L]
b) Second method of defermining the coeffictents. Putting x=1 in identity
{3), we will have:

Whence

1=A.4, i.e., A=,
Putting x= —1, we get:

_l='_Bz'2. i- e., Bz=lfl2|
Further, putting x=0, we will have:

0=A--B,—8B,,
or B=A—B,=-="1,.
Hence,
ped § B0 L L e
Tdx—1 4 x4 2 (1)

1
——Ilﬂll—l J_E In|x-1 |—2—(x—+-—ﬂ+(?=
] 1 x—1
=g T e+
Example 2. Find
' dx —
Sx’——2x2+x'_ ’
Solution. We have:
| 1 A B C
x*—-?x’—}-x_x(x—-l)zh?_l—x—l+(x--l)’
and
=4 (x—1)*+ Bx (x—1)+4-Cx, (4)

When solving this example it is advisable fo combine the {wo methods
of determining coefficients, Applying the second method, we put x=0 in
identity (4). We get 1=A, Then, putting x=1, we get 1=C, Further, app-
lying the first method, we equate the coefficients of x* in idenlity (4), and

get
0=A-+B, i.e, B=—1,
A=1, B=-=1, and C=l.

Hence,
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Ccnsequently,

dx |

If the polynomial Q (x) has complex roots a -+ b of multiplicity &, then
partial fractions of the form

A,x+4 B, Apx 4 By, (5)
Mtpxtq DT (e prtg)f

will enter into the expansion (2). Here,
K24 px g = [x—(a-}-1b)] [x—(a—1b)]

and A,, By, .., A, B, are undetermined coeflicients which arc determined
by the methods given above For k=:1, the fraction (5) 1s inteyrated dircet-
ly; for B> 1, use is made of the reducton method; here, i is llrst ad\n-

sable to represent the quadratic frinomial x*--px-¢q in the form ( x+ ) =

2
+( q—%) and make the substitution 1—1—§=z.

Pk d 3
S(r=+-4x }5)2dx‘“"

Example 3. Find

Solution. Since
A2y | B (¥ 221

then, pulting v--2-2, we pel

ezl €l Py,
"5 2 HF“Z“SU? ) e 4

1 - '
. SR | .-
vEEg 0y Sf:l' JSM

1 !
_‘“2(::2313_1 CTIEEY

|
z ST z| 1
—dtc tan z—h—zq_—)-!- o e tan z= ~SEID
1 : V-3 1
— -._(‘ i — e 4 r -‘) —
5 Al tan z ST YRS 2 arc tan(x+4-2)+4-C,

2°. The Ostrogradsky method. 1i Q (1) has multiple roots, then

P) , N(v) (Y
kQt 3 G T S‘Qz(’t]d (6)

where @, (x) is the greatest common divisor of the polynomial Q (x) and its
derivative Q' (x);
Qe () =Q (1):Q, (x);

X (x) and Y (x) are polynomials with undetermined cocfficients, whose degrees
arc, respectively, less by umty than those of Q,(x) and Q,(x).

The undetermined coeflicients of the polynomials X (x) and Y (x) are
computed by differentiating the identity (6).

Example 4. Find
S‘ dx
(e —1*"
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Solution.

dx __Ax’—f—Bx+C+ D:cg-I—Ex—]—F
S{x’——l)a_ x'—] ; xt—1
Differentiating this identity, we get

1 (2Ax+B)(x»*—1)—=3x"(Ax*+Bx+C) , Dx*4+Ex+F
(B—1)2 (x*—1)? + ¥ 1

T e (24x+ B) (x*—1)—3x? (Ax® 4 Bx+ C) + (Dx?+ Ex -+ F) (£*—1).

Equating the coefficients of the respective degrees of x, we wili have:
D=0, E—~A=0; F—=2B=0; D43C=0; E4+24=0;, B+F=—1;

whence

A=0; B=—%; C=0; D=0: E=0; Fz_é
and, consequently,
de«. 1 «x 2 dx 7
[ YUl oy S g oy M

To compute the integral on the right of (7), we decompose the fraction

x-'_l--_l into partial fractions:
1L Mx4-N
x‘—l_x-l+x’+x+i ’
that is,
l=L(x*+ x4+ D4 Mx(x—1)+N (x—1). (8)

Putting x=1, we get L=,
Equating the coefficients of identical degrees of x on the right and lelt

of (8), we find
L4+-M=0, L—N=1,

or 1 .
Therciore.
1 x-+2 o
x’—-i 3 Sx—-l 3 Sx=+x+l
=§ln| x—1 I_E nx24+x41) = —— V._arc tan 2:'/:%_]+C
and
dx X 24+ x+1 2 2x -+ 1
Stx=—l)=_—3(x=—n+ =T T V“'““a“ V—+C
Find the followmg integrals:
dx
1289, S(x -+a) tx+b) 1282. S(x+ Dix+2)(x4+3)°
5:-}9 2x* +41x —9I
1281 S R 1283. S(x-‘ll(x+3) T
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byt -2 dx
1284, | i dx. 1293. S{ T e
1285. {2, 1208, {20
1286. { ==~ dx. 1205. {55,
x*—6x4 12¢* -6 dx
1287. ¥ —61% - 12x—8 dx. 1296. S m.
5¢* 4 6x4-9 ; d
1288. {xls)h . 1207. (.
x2~—8x+7 _ 3x-45
1289. | - Sx__m),dr. 1208. | oot .
2x—3
R, Sw 3oy & 1299, S(x+1m=+x+n*'
2 4-x+1 x4 1
1291, Smdx. 1300. S(x“—-’lx—l 5)3
1202, {5
Applying Ostrogradsky's method, find the following integrals:
dx dv
1301 S(H l)*(r“rl)*‘ e g(ﬁ)_
¥t —2\74-2
1302. S( e 1304. j( —sergds,
Applying difierent procedures, find the integrals:
. » ) dx
1305. j( TTRr g 1310%, | =
) d\
1306. S—f_giﬁd B,
v 14 dx
1307. S( i . 1312. 5“, TS TS
x*dh
1308. SW‘W)‘ 1313, | s
d.
1309, { 1314, 7.

Sec. 6. Intzgrating Certain Irrational Functions

1°, Integrals of the f.rm
Py Pa
]

ax-+b\a ax -+ b\d,
fole (. (G Je o

where R is a rational function and p,, q,, ps, g, are whole numbers.
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Integrals of form (1) are found by the substitution
ax-+b
cx+d“z

whete n is ihe least common multiple of the numbers g,, q,, ...
Example 1. Find

- dx ~
5 Vo—1—3/ 21"
Solution. The substitution 21 —1=2' leads to an integral of the form
L dx . " 92z —9 ’ 2tdz _
Vix—1— /2¢—1 et—2 z—|
=25l (z—l— | +z%l) dz =(z+1)*4+2Ilnjz2—! |+ C=

=(1+ /2% =1)*+1n (;/Zx—T—1)*+C.

Find the integrals:

w

1315. [ 2 dx. 1321. 5 * dy,
. Vx—1 J X422
: O : dv
1316. \ Vi 1322, j(‘—_-"” =
' dx ; /v -1
i (eas® 1323, /2 =1
j Vet pVivFoye s\ l 35
" cdx * AT
318, \ o= ,=. 1324. v -ty
1318 \ B 32 5 I/ <ilds
Wl s, |30 g
Y V142
1320, d
S(x-i = Vil
2°. Integrals of the form
T P, () d @
_S Var®+bxtc . )
where P, (x) is a polynomial of degree n

Put

S —--P" &) dx==Q x) Vaxd+b A . 3
Vartbrge o Torres jVa.x’-I—b.r-FE' &

where Q,_,(x) is a polynomial of degree (n—1) with undetermined coelfi-
cients and A is a number.

The coefficients of the polynomial Q,_, (x) and the number A are found
by differentiating identity (3).
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Example 2.

j‘ x? Vx’—]—‘ldxﬂj\ V+4x =

dx
=(Ax*+Bx*+Cx+D) Vx*+4 +A f T
Whenece
AY -4t . —— (AL Bx*-+Cx-+ D), A
- = x+C 244 ALt S Y
Vx4 A #2884 Q) ¥ Hi Var1 +Vx’+4'

Multiplying by ¥ x*44 and equating the coefficients of identical degrees of
x, we obtain

A=%; Bl Cn ; Dl R

Hence,

Sx’l/ x'—i-4dx=xa.:2x Va4d4d—2In(x-+ V¥ x* +4)4-C.

3°, Integrals of the form

dx
- 4
e “
They are reduced to integrals of the form (2) by the substitution:
: =1,
A —Q
Find the integrals:
2 gd\. 1329 { d.t'
1326. j el N
i dr
_ Y dx. 1330. s A
— 51/ |2t J 1P Varpay
" oxt a1l
1328. dx. 1331. 5 AT dx.
s‘l/li.s. x VaE—x+1
4°, Integrals of the binomial differentials
S X" (@ - be")F dx, (5)

where m, n and p are rational numbers.
Chebyshev's conditions. The integral (5) can be expressed in terms of a

finite comnbination of elementary functions only in the following three cases:
1) if p is a whole number;

2) if Z :l is a whole number. Here, we make the substitution a-+ bx" =

=2% where s is the denominator of the fraction p;

3 if m+-1
n

+p is a whole number. Here, use is made of the substitution
ax~ "+ b=2°%
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Example 3. Find

];f1+“ x
= dx=1I
X
l-]-l
11 1 omtl_ T3
Solution. Here, m=—7gin=pip=gi ——= T =2. Hence,
4
we have here Case 2 integrability.
The substitution
1
| gt =20

yields x=(2*—1)*; dx=122% (2*—1)*dz Therefore,

1

1 1 .
=Sx- ?(l+xT)de= 125 z____:z(;z:—l)lz" dz=

=125(z°——z’}dz :-1722’-—32"4—6',
where z=]’/l+ i’/ % .
Find the integrals:
it B dx
1332. Sx"‘(l 1+ 2%%) 7 dx. 1335. S TR
— j . 1336, 3 S
/l + ad (24 xa)T
> dx
1337. e =
1334. 5;4 - 5 Vi3 it /n
Sec. 7. Integrating Trigonometric Functions
1°. Integrals of the form
S sinxcos"xdx =1 ,, (1
where m and n are integers.
1) If m=2k-1 is an odd positive number, then we put
Ly = S sin®® x cos™ xd (cos x) = —S (1 —cos® x)® cos” xd (cos x).

We do the same if n is an odd positive number.
Example 1.

S sin'® x cos®x dx = S sin' x (1 —sin? x) d (sin x) =

sin''x  sin' .y

S | B T




Sec, 7] Integrating Trigonometric Functions 129

2) If m and n are even positive numbers, then the integrand (1) is trans-
formed by means of the formulas

sin? x= % (1—cos 2x), cos’x=§l— (1 -} cos 2x),

1

sin x cos x= 5 sin 2x.

Example 2. S cos? 3x sin? 3x dx = S (cos 3x sin 3x)? sin® 3x dx =

2 —_
_Ssin 6x 1 Zm ﬁzd _%S (sin? 6x— sin? 6x cos 6x) dx =

. l—cos 12¢ ., .

.__ES(—;Z—-—-———sm ﬁ:ccnsﬁx)dx_.

1 /x sinl2¢ 1 4
(E*T—ESHI GX)-{—C.

3) If m=—p and n=— v are integral ncgative numbers of identical
parity, then

dx
I =\ ——— =\ cosec* xsec* "% xd (tan x) =
Py sin* x cos’ x ( )

n ntv_

1o\ * Lot (1+tan2 x) 2
=S(l+ m) (1-Ftan? x) d(tan X)== S FEIP

d (tan x).

In particular, the following integrals reduce to this case:

i ] b
dx 1 d( d(” Tz‘)
S = - and S

s P E.l..—l v
sin“x 2 cos A b
sin” (x-]- —2-)

sin® ? cosf‘

Example 3. S -—Ssec” xd (tan .\)ﬂS(l+tan x)d (lan x)=

cos® x

=lanx—5—§ tan®* x4+ C.

sindx 2B\ L x .
sin® = cos® —

dx I dx 1 3
Example 4. S = Stan 5 sect —d\: =
2 2

X 2
(1+tan’ —)
“é‘ x? sec*—{dx=—2—g [tan“ ﬁ—}- = 4-

tan® —
an®

X N 1 1
+tan §] d(tan ?)=T [—- = +21In

51900
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4) Integrals of the form Stan"‘xdx (or Scot"'xdx), where m is an in-
fegral positive number, are evaluated by the formula
tan* x =sec* x—1
(or, respectively, cot® x=cosec?® x—1).
Example 5. S tan® x dx= S tan® x (sec?*x—1) dx =

l 3
tans (sectx—1) dx_tan —tanx+x+C.

b) In the general case, integrals /,, of the form (1) are evaluated by
means of reduction formulas that are usually derived by integration by parts.

2
g ch--‘S"ulrl’.vcti:c:--

2 I
Example 6. d.\: =S‘ sin x—]— cos
cos cos® x
=1 ut s!n x . cosx
RS Sl j. | "2 cos’ cos®x cos x
sin x
.|=m —2- In| tanx-|—secx|-|—C.

Find the integrals:

1338. S cos® xdx. 1352. xdx =
sin — cos? —
1339. S sin® xdx. 2 n2
sin (x+ T)

1340. S sin® x cos® x dx. 1353. . dx.

g % dS;l'l XCOSx
1341. Ssu: 5 €0s —Z,—dx. 1354. Ssm‘x
1342, S;::f', ;: dx. 1355. S sec* 4x dx
1343. { sin*xdx. 1356. | tan®5xdx.
1344. S sin‘_xcos‘xdx. 1357. Scot' xdx.
1345. S sin* x cos* x dx. 1358. S cot®* x dx.
1346. { cos*3xdx. 1859. { (tan' g +tan' ) dr.

d
1347. | 5. 1360. § xsin®x"dx.

dx cos? x
1348, (2. 1361. Ssm. ~ dx.
1349. | i, 1362. § sin®x §/cos xdx.

dx 363. j—d"_f._— .
RN Ssin' xcos®x * ke ¥ sin xcos? x
dx dx

1351, Ssin‘ xcos’x " 104 Vianx
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2°, Integrals of the form g sin mx cos nxdx, S sin mx' sin nx dx and

Scos mxcos nxdx. In these cases the following formulas are used:
1) sin mx cos nx=—21- [sin (m -+ n) x +sin (m—n) x],
2) sin mx sin nx=—21- [cos (m—n) x—cos (m -+ n) x]:
3) cos mxcos nx:-éh [cos (m—n) x -cos (m -+ n) x].
Example 7. S sin 9xsin x dx =S —;— [cos 8x —cos 10x] dx=
l sin 8x——-—1- sin 10x - C.

=16 20
Find the integrals:

1365. S sin 3x cosSx dx. 1369. S cos{ax } b)cos(ax—Db)dx.
1366. | sin10xsin 15xdx.  1370. § sin ot sin (ot 4 @) dt.
1367. Scos —'} Ccos —; dx. 1371. S cos x cos* 3xdx.

1368, S sin —g— sin %‘5 dx. 1372. S sin x sin 2x sin 3x dx.

3°. Integrals of the form
S R (sin x, cos x)dx, (2)

where R Is a rational function.
1) By means of substitution

X
ian-é-—-!,
whence
Sinx,—_i— cOs t—;l—.T_t.: dx:..zd_lt_.
1 4-4%° 14-£2° 14t2'

integrals of form (2) are reduced to integrals of rational functions by the
new variable £.

Example 8. Find

dx ]/
Sl—l—sin x4cos x

Solutlon, Putting tan —=t, we will have

2
2dt
H
T ¥
1448 " 1440

st



132 Indefinite Integrals [Ch. 4

2) If we have the identity
R (—sinx, —cos x)=s R (sin x, cos x),

then we can use the substitution tan x=1¢ to reduce the integral (2) fo a

rational form.
Here,

sinx =

and

Example 9. Find

-

Solution. Putting

t
Vi+i

x=arc tant{, dx=

tanx=1¢, sin*x=——r; dx =

we will have
dt

|
oS x= V-l—}-i’
dt
e
(3)
£ di
T+ =T

Nty

arc tan (t YV 2)4-C=

V_

T+ Y3

1
)

dt 1 ditve) _
§1+(:lf‘é‘)'_

arc tan (V' 2 tanx)+C.

We note that the integral (3) is evaluated faster if the numerator and
denominator of the fraction are first divided by cos®x.
In individual cases, it is useful to apply artificial procedures (see, for

example, 1379).

Find the integrals:

1373. 53+5 cos x °

1374. Ssmx—l—ccsx
1375. Sl“’“ dx.

+-cos x

1376. S sx e

] —sin x
dx

1377. SS —4sinx1-7cosx*

dx
1378. SLOS x-4+2sinx4-3°

dsinx4+2cosx
L 3]
1379 2sinx+3cosxd

1380. S Ly teax g

l1—tanx
1381*,

dx
14+3cos?sx *

dx
3sin?x--5cos?x
dx
sin? x - 3sin xcos x—cost x

1383*. S
dx
1384*- Ssmzx-—5sinxcosx '

1385. L—l_% dx.

—cos x)?

sin 2x
1a88. S TFsin?x dx.

1387. S BT i

cos? x +-sinf x
cos X
1388. S sin*x—6sinx+5 dx.
dx

1389*, S (2—sin x) (3 —sin x) *

| —sinx--cos ¢
*
1390%. Sl+sinx—cosxdx'

1382, S
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Sec. 8. Integration of Hyperbolic Functions

Integration of hyperbolic functions is completely analogous to the inte«
gration of trigonometric functions.

The following basic formulas should be remembered:
1) cosh? x—sinh® x=1;
2) sinh? x= i (cosh 2x—1);

3) cosh? x= 5 (cosh 2+ 1);
4) sinh x cosh x =-::— sinh 2x,

Example 1. Find

g cosh? x dx.
Solution. We have

Scosh’ X dx=5% (cosh 2x 4 1)dx=%sinh 2x+—é—x—|— C.

Example 2. Find

S cosh? x dx.
Solution. We have

S cosh® x dx= S cosh?® xd (sinh x):S (I+4sinh?x) d (sinh x)=

=sinh x _l_smh’ +C.
Find the inlegrals:
1391. S sinh® x dx. 1397. S tanh® x dx.
1392. S cosh*x dx, 1398. S coth® x dx.
1393. S sinh® x cosh xdx. 1399. Ssinh’ x:,_nsha
1394. S sinh® x cosh® x dx. 1400. 5'2 R xi’fa S
1395. Smm =, 1401*. Stamf%i
1396. { et 1402. E %—‘% :

Sec. 9. Using Trigonometric and Hyperbolic Substitutions for Finding
Integrals of the Form

S R (x, V ax*+ bx+¢) dx, (1)

where R is a rational function.
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Transforming the quadratic trinomial ax®*+4-bx+c¢ into a sum or difference
of squares, the integral (1) becomes reducible to one of the following types
of integrals:

1) SR (z, Vmi—2)dsz;
2) S R (2, YV m'+ %) dz;
3) S R (2. V2—mY) dz.

The latter integrals are, respectively, taken by means of substitutions:

1) z=msint or 2z=m tanh{,
2) z=mtant or z=msinh f,
3) z=msect or z=m cosh {.

Example 1. Find
dx

T
j(x+1)= Vitox+2
Solution. We have

P42 +2=(x41)241.
Putting x+ 1=tan 2, we then have dx=sec®zdz and

dx __(* sec*zdz  (cosz o
I = (x41)2 Vm_ tan‘zsecz_Ssiuzz &=
1 V x¥42x 12
=Gzl x+1 + €
Example 2. Find
SxV Xi4x 4+ ldx=1.
Solution, We have
q 2
x’+x—[—l=(x+—é—) —I—-g—.
Putting N
Jc—[-‘-=-2£=-]/—;E sinh{ and dx= };3 cosh £ di,
we get
V3 1\V3 V3
I—-j(-——z— smhr——2— —fz—-—-coshto-—g—- cosh t di =
Phad
=3 }8 3 jsinht cash‘tdt——g-‘gcosh'tdt=
_ 3V 3cosh*t 3 /1 . 1
=3 3 —E(—gsmhtcosht-[—?t)—l-(?.
Since
sinht=-—2- (x-l— -1—-) cosht—-—g—- Vx'-{—x—}—l
] V3 2)’ V3
an

— (x+ .;_+ Vm)m Vi?
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we finally have

ulu
#“-—"‘\

[=5 (x4 )T — +%) VaTxFi-

—2in (x—[— Lu Vm)
Find the integrals:

1403, |V 3—2x—x dx. 1409. § V¥ —6x—7dx.
1404. Vo dx. 1410, § (¢ +x+1)" dx.
405. | X dx. 1411. . SO
! j V_Q-I-x‘ * ] (x—l}Vx’—3x+2 )
1406. § V¥ —2x 1 2dx. 1412, S s,
(x2—2x +5)*
1407. \ V¥ —4 dx. ;
07. V¥ —ddx 1413, f(1+x-) =

1408, { V¥ T xdx. 1414,

I(l—x’) Vits'

Sec. 10. Integration of Various Transcendental Functions
Find the integrals:

1415 § (2 4+ 1) e** dx. 1421. S;,qji——;;__g

1416. § x* cos? 3x dx. 1422, EVF‘%Z"_H

1417. stinxcostdx. 1423. Sx In l+xdx

1418. Se” sin®* x dx. 1424. Sln (x + V1 ¥ ) dx.
1419. Se" sin x sin 3x dx, 1425, Sxarccos(Sx—-2) ax,
1420. § xe® cos x dx. 1426. { sinxsinhxdx.

Sec. 11. Using Reduction Formulas

Derive the reduction formulas for the following integrals;
1427, 1= oy find 1, and /1,

1428, I, = sin"xdx; find I, and I,
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1429, 1,,=S—“"—; find I, and I,.

cos” x

1430. /,={ x"e~*dx; find I,,.

Sec. 12. Miscellaneous Examples on Integration

1431, {5ty 1448, j(l x;“;;r:;

1432, {22 dx. 1449. EVl—x:;—w‘

1433. S—"’-l-dx. 1450.5 2l dn

e (1)

1434, { o 1451*, (x2+4x?';m.

1435. { - +2)‘,”{‘x - 1452. (V¥ —9x.

1436. { 1o - 1453. SVx—d:lx’ dx.

A 5(x'+2)* ' S jx Vet il

1438. ST—‘W 1455. gx]/:’+2x+2dx.

1459, { et o6 v

1440. “'_;_..7‘“_&4_& 1457. { - V“;”‘_r‘

1441, j‘lf—f;-‘—)’dx. 1458. /i =

1442, jvﬁ 1459. E Vf’:_ydx.

1443. SI—VIZZY di 1460. Sc st x dx.

1444 m"x 61, § sy
e R S

1445. Vaxi— 2x+l)’ ax. 1463. j" SSi:;Sfxdx,

1. -[ 1/5-—15-!- Vi—x 1464. Scosec’ 5x dx,

1447, \ ———dx, sin® x
j‘ '/m dx 1465. Smdx.
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1466. Ssiu (—2— —-—x)sin(% o4 x) dx.

1467.
1468.
1469.
1470.
1471.

1472,

1473.

1474.

1475.

1476.
1477.
1478.
1479,
1480.

1481.
1482,
1483.

)

J
J

J

ian’(—;—+%) dx

2sinx4+3cos x—5"
dx
2+3cos?x’
dx
cos? x4 2sin xcos x4 2 sin® x
dx
sin x sin 2x °
dx
(2 +cos x) (34cos x)
sec?x

Y tantx }-4tanx+1

COs ax
Vu’ -+ sin® ax

o
|

}
|
S

xdx
cos23x ’

x sin®*x dx.
xet' dx.
xe** dx.

2L InY 1 —xdx.
xarctanxd

V1 +xt

. 3
5 sin® —’2‘— COS -éfdx,

i

dx
(sinx4cosx)**
dx

(tan x4 1) sin? x

1484, S sinh x cosh x dx.
85. sinh /' T—x di.
14 72 paar: X

sinh x cosh x
1486. Ssinh’ x +cosh?® xdx'

1487. sl—.x—dx.

J sinh? x

1488. E &

er* —2¢* °

e,x
1489. | e d,

1490.5 = it
(ex 1)4

1491.

1-4*
1492. \ (x*—1) 10~** dx.
1493. \ Ve*  1dx.

j=
S
S t
1494, Sarc anx
}#
)e
)
)

1495. arc sm — dr

1496.
1497.
1498. \ x arc tan(2x-+3)dx.
1499, S arc sin}/ x dx.
1500, S}x]dx.

cos (In x) dx.

(x* —3x) sin bx dx,



Chapter V
DEFINITE INTEGRALS

Sec. 1. The Definite Integral as the Limit of a Sum

1°, Integral sum. Let a function f(x) be defined on an interval a<<x<<b,
and a=x, < %, < ... < x,=~> is an arbitrary partition of this interval into
n subintervals (Fig. 37). A sum of the form

Sp= D f &) Ax;, (1)

{=0o
where

4<E<xi4 AG=Xip,—xg
i=0,1 2 ... (n—=1),

is called the integral sum of the function f(x) on [a, b]. Geometrically, S
is the algebraic area of a step-like figure (see Fig. 37).

n

")

2°, The definite integral. The limit of the sum S,, provided that the
number of subdivisions n tends to infinity, and the largest of them, Ax;

to zero, is called the definite integral of the function f(x) within the limits
from x=a to x=2>5; that is,

b

m 3 fE) Ay = f () dx. @)

max Axj -+ 0 = s
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If the function f(x) Is continuous on |a, ], it is integrable on [a, b]; i.e.,
the limit of (2) exists and is independent of the mode of partition of the
interval of integration [a, b] into subintervals and is independent of the
choice of pointsgﬁf in these subintervals. Geometrically, the definite integral
(2) is the algebraic sum of the areas of the figures that make up the curvilin-
ear trapezoid aABb, in which the areas of the parts located above the x-axis
are plus, those below the x-axis, minus (Fig. 37).

The definitions of integral sum and definite integral are naturally gen-
eralized to the case of an interval [a, b}, where a > b.

Example 1. Form the integral sum §, for the function

f)=14x

on the interval [1,10] by dividing the interval into 2 equal parts and choos-
ing points §; that coincide with the left end-points of the subintervals
(% X;4.]. What is the lim S, equal to?

n—.w
lU—l=_§:_ and E,-:x;:x,,—!—iﬁx,—:l—{-g%. Whence

Solution. Here, Ax, =

E)=1+1 +%=2+?’{-. Hence (Fig. 38),

n-=1 n-=1
R 9.\ 9 18 81
S‘n=2f(§i}ﬁxf=z,(2+'n—l)—n'='r?n+r§(0+l+...+n—l)=
i=o i=o
. 8ln(n—1) 81 1\ _ o1 8l
_18+E-E—T-HIB—}——2-(1—--&—)-58-§-—2—5,
lim S,==58 L
n-w 2

Example 2. Find the area bounded by an arc of the parabola y=x?, the
x-axis, and the ordinates x=0, and x=a (a > 0).
Solution. Partition the base a into n equal Y

parts Ax=%. Choosing the value of the func-

tion at the beginning of each subinterval, we will
have

Y =0; y==(%)’: = [2 (ﬁﬂ : v
Y= [(n—l)—n‘i] ,

{
The areas of the rectangles are obtained by mul- @

tiplying each y, by the base &x=-—E~ (Fig. 39).
Summing, we get the area of the step-like figure Fig. 39

a a\? : 2 ]
Sa=2 (.ﬁ.) (1420484 ... +(a—1)1].

Using the formula for the sum of the squares of integers,

ik,=n(nj- 1) 20 +1)
6

kw1
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we find

a’n (n—1) (2n—1)
Sn= 6n? !
and, passing to the limit, we obtain

S= lim §,= lim £=Nn@r—1) o
n—-® " n—+>wo 6n? — '

Evaluate the following definite integrals, regarding them as the
limits of appropriate integral sums:

b 1
1501, {dx. 1503. { x'dx.

T 5
1502. § (v, +gt)at, 1504. {2%dx.

8
v, and g are constant. 1505*. S x' dx.

1506*. Find the area of a curvilinear trapezoid bounded by
the hyperbola

1
y=-x_’

by two ordinates: x=a and x=0b (0<<a<<b), and the x-axis.
1507*. Find

mk

f(x)=\ sin{dt.

L]

Sec. 2. Evaluating Definite Integrals by Means of Indefinite Integrals

1°. A deflnite integral with variable upper limit. If a function f(¢) is
continuous on an interval [a, b], then the function

F(x) =S F(t) dt
a

is the antiderivative of the function f(x); that is,
F'(x)=f(x) for a=sx<b.
2°, The Newton-Leibniz formula. If F’ (x) =/ (x), then

o
S f (x) dx=F (b)—F (a).
a
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The antiderivative F(x) is computed by finding the indelinite integral
Sf[x)dxz-F(x)—i-C.
Example 1. Find the integral

S X dx.
. -1
$ 5 i
Saluiion. Sx'dx=’i5- i,—%'—(‘“gll‘—‘"s%
-
1508. Let
b
1=S% (b>a>1)
Find a

dl di
1)%- Q)E-

Find the derivatives of the following functions:

X ?

1509. F(x)={Intdt (x>0). 1511 F(x)={ear.
1r: Vx_x
1510. F(x)= (VT ar. 1512. /= { cos(t*)dt (x>0).

1513. Find the points of the extremum of jtrhe function

X

y=Sii':—tdt in the region x>0,

]

Applying the Newton-Leibniz formula, find the integrafss

1 e X ,
1514. S1+x' 1516. _Sxe dt.

x

-1
1515. { 5. 1517, {rcostar.
-2

0
Using definite integrals, find the limits of the sums:

1518%, lim (r—:ﬁ%-{- ...+““1).

y
n-»® f
1

. 1 1
1519**, .;]21(”+l+"+2+.”+m).
12424 ... 4n”

S ZINELT N

1520. lim

e
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Evaluate the integrals:

1521. { (x'—2x+3)dx.

1522, S (V 2%+ 3/ %) dx.

1523. S 1+ Vy 4,

1524.

1526.

s
Vi
15625, js‘
=
1527,

1529.

-~
1528. S |
e

1530.

LA
b3
1)
w2
._]_.
)

1531.

15632, \ sec’ada.

.’3!...-—-;.:-[: Oy e

1633.

e
=
L&
g

1534.

1535.

1536.

1537.

1538.

1539.

1540.

1541.

1542,

1543.

1544.

1545.

dx
5 V 54 dx—x2 )

Vit

cos® ada.

fa
=

<
0
*»

a L% °¢--""=-u]:a et——"")lilﬂ ©
»
:.
S
=
=

sin (In x)
S—“f_— dx.

lan xdx.

nt..-—jbl:l

1
|

[ 3

o
(e}
-

o]
s

S

%

ey ainmula

-+
A3
&

By
=

cosh®x °

] QM -
C_—-—.\:j -
o

—
-
L]

sinh®x dx,

9!...-"‘.13
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Sec. 3. Improper Integrals

1°. Integrals of unbounded functions. If a function f(x) is not bounded
in any neighbourhood of a point ¢ of an interval [a, 6] and is continuous
for assx<c and ¢ < x< b, then by delinition we put

b c—-e b
Sf(x)dx: lim S F(x)dx+ lim S f (%) dx. (1)
> B -+>0 P B—P0r+8

If the limits” on the right side of (1) exist and are finite, the improper inte-
gral is called convergent, otherwise it is divergent. When c¢=a or ¢=b, th:
definition is correspondingly simplified.

If there is a continuous function F(x) on [a, b] such that F'(x)=f(x)
when x = ¢ (generalized antiderivative), then

b
{ F e de=F)—F (@. @
b
If |f(x)|<F(x) when asx<b and S F (x) dx converges, then the in-

a
tegral (1) also converges (comparison fest).
A

()220 and Vm f(x) Je—x|"==A# @, A0, ie, [0~

when x— ¢, then 1) for m < 1 the integral (1) converges, 2) for m=1 the
integral (1) diverges.

2°, Integrals with inflnite limits. If the function f(x) is continuous when
a= x < oo, then we assume

@ b
S f () de=lim S f(x) dx 3)
a +® a

and depending on whether there is a finite limit or not on the right of (3),
the respective integral is called convergent or divergent.

Similarly,
b @ b
Sf(x)dx— lim |\ f(x)dx and Sf(x)dx= lim \ f(x)dx.
. T ~e bxrad

@
If [f(x)|<<F(x) and the integral SF(x)dx converges, then the infe-
a

gral (3) converges as well.
It (>0 and lim f() s =A#w, A#0, Le, f(x)mfﬁ when

x— oo, then 1) for m>1 the integral (3) converges, 2) for m« 1 the inte-
gral {3) diverges.
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Ex'amp!e t.

-8
dx 1
= % yim (%= um (__1) lim (—--—1)=no
alLo S x‘+e-+uS sl-ro +g-»a ]
-1

and the mtegral diverges.
Example 2.

n
— i fen 0y =~ ,
H—x’ bl_l*mw S T bl_lbmm (arc tan b—arc tan 0) 5

Example 3. Test the convergence of the probability integral
- -]

S e~ dx; )

Solution. We put

- 1 - 2]
S e et dr+S =¥ dy,

The first of the two mtegrals on the right is not an improper integral, while
Ehe second one converges, since e~x" <<e™* when x>1 and

® b
Se'”dx:: lim Se""dx: lim (—e f+4e )=e™!

b w b w
1 ]

hence, the integral (4) converges.
Example 4. Test the following integral for convergence:

'}r m . (5)

Solution, When' x— 4 oo, we have

e ]/x-(1+ 0 iV &

Since the integral
ab
5‘ dx
T
1 T

converges, our integral (B) likewise converges.
Example 5. Test for convergence the eiliptic integral

S yise ©
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Solution. The point of discontinuity of the integrand is x=1. Applying
the Lagrange formula we get

1 1 1 l
T—xt — vdd [
V X '/-(l x) 4):: u_x)‘ 2x:

where x < x, <1, Hence, for x— 1 we have

1

] 1 1 )4
]fl—-x‘ 2 (l—x *
Since the integral
1

f ()"

0

converges, the given integral (6) converges as well.

Evaluate the improper integrals (or establish their divergence):

1554, 5 l—%,-.

1547. (. 1555. S e
1548, (5. 1556. § sin xdx.
1
3 1 p
X
1549. S(x__”, 1557 | 1o+
0
, T
1550. | -2, 1658, | .
o 0
1551. {2X, 1559. {cor  @>1).
1 a
1552. S%‘i 1560. Sﬁfﬁ- @>1).
P
® N
1553. 5% 1661. { cot xdx.
0
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1
arc tan x dx
1563. S dx- 1566. Sx'-__—"E?.
o dx
1564. 5?:_1)7

Test the convergence of the following integralss

100

dx : dx
1567. §3.7_5r'+2 T 1571. Sﬁi‘ﬁ‘

+ @ 1
dx dx
1568. 5 ST 1572. 5 L,
I dx I: sin x
1569. -S. o7 1573, S‘ =~ dr.

. xdx
1570. S e

1574*. Prove that the Euler integral of the fiist kind (bela-
function)

B(p, q)={ & (1—x)7" dx

converges when p>0 and g >0.
15756*. Prove that the Euler integral of the second kind (gam-
ma-function)

I‘(p)=a§ P =te~ X dx

converges for p>0.

Sec. 4. Change of Variable in a Definite Integral

If a function f(x) is continuous over asgx<<b and x==q (¢) Is a function
continuous together with its derivative 5p" (t) over u<t<P, where a=¢ (a)
and b=q (), and f[@(f)] is defined and continuous onthe interval a<<t <P,
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then b :
S f(x)dx = S flo (D] ¢’ (1) dt.
a a

Example 1. Find
a
S x* Y at—x2dx (a > 0),
L]

Solution. We put
x=asinl,
dx=acosf dl.
Thent:urcsin-ﬁ- and, consequently, we can take a=arcsin(Q=0,

f = arc sin 1=_;_r, . Therefore, we shall have

a¥sin’{ Y a*—a?sin*facosidi=

T n ﬂ

°t_--")»|=|

a
S XV at—xtdx=
]

a‘ A ﬂ' .
=a"S sint { cos® ¢ df = - S sin 2 dt = = S (1 —cos 41) dt =
0 Q ]

i
4 1 . 4
a na
=3 (t—-——4 sln4t) =15 "

1576. Can the substitution x =cos{ be made in the integral

S V 1—x*dx?

Transform the following definite integrals by means of the
indicated substitutions:
: K

(577. \ Vx+1dx, x=2t—1.

1580. Sf(x)dx, x==arctant.

dx .
, = Sin £,
Fiea> =5 1581. For the integral

b
Vfxydx (b>a)

1578. j

——t—

1579. , X=sinht{.

a-lat.—-—-;u[a- -
-
k- &
-
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indicate an integral linear substitution

x=m‘-|—[5,

as a result of which the limits of integration would be 0 and 1,

respectively.

Applying the indicated substitutions, evaluate the following

integrals:

Evaluate the following

substitutions:
1587. S Y=z l—x dx.
Vi

1588, [ Y51y

Evaluate the integrals:
dx
1591, Sx —

W S(1+ -

x=1*

o

tan x =1t

integrals by means of appropriate

Ins

1589. 5 cere—l o

43
o
o d
1590. I
S;s.wr Virt1

a
1593. gl/ax_—x' dx.

1594. SS 3cosx*

1595. Prove that if f(x) is an even function, then

Sﬂ Fx)dx==2 §f(x)dx.

-3
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But if f(x) is an odd function, then

S f(x)dx=0.
-a
1596. Show that

_5; e—x’dx=23'e"x’dx—— e';:

1597. Show that

sm Jf.'
arc cos x
0

1598. Show that

f(sinx)dx= § f (cos x) dx.

"!...-"‘:nla

Sec. B. Integration by Parts

If the functions #(x) and v(x) are continuously differenfiable on the
interval [a, b], then

b b [/]
S 4 (x) v (%) dx=u (x) v (x) —S v () 4’ (x) dx. (1)

Applying the formula for integration by parts, evaluate the
following integrals:

1599. §x cos xdx. 1603. ‘§ xe~*dx.
1600. §In x dx. 1604. §e'a‘ cosbxdx (a>0).
1601. SI x’e**dx. 1605. § e-%sinbxdx (@a>0).
u 0
1602, § e* sin x dx.
0
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1606**. Show that for the gamma-function (see Example 1575)
the following reduction formula holds true:

Lp+1)=pI'(p) (p>0).

From this derive that I' (n4+1)=nl, if n is a natural number.
1607. Show that for the integral

L n

l,= §sin"xdx= § cos” x dx
0 o

the reduction formula
. Y

n n n—2
holds true.

Find /,, if n is a natural number. Using the formula obtained,
evaluate /, and /,,.

1608. Applying repeated integration by parts, evaluate the
integral (see Example 1574)

B(p, g)=§ #/~* (1—x)7'dx,

where p and g are positive iniegers.

1609*. Express the following integral in terms of B (beta-
function):

i
2
T - S sin™ x cos” x dx,
]
if m and n are nonnegative integers,

Sec. 6. Mean-Value Theorem
1°. Evaluation of integrals. If [ (x) <<F (x) for a<<x<b, then

b b
Sf(x) d.’xéSF(x) dx. (1)
a a

If f(x) and @(x) are continuous for a<Cx<b and, besides, ¢ (x)=0, then
b b b
m{owa<{imewaan | oma, @)
a

a a

where m is the smailest and M is the largest value of the function f(x) on
the interval [a, 0].
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In particular, if p(x)=1, then
b
m(b—a) < S f(x) dr < M (b—a). 3)

u

The inequalities (2) and (3) may be replaced, respectively, by their equiva-
ent equalities:
b

b
[rmewar=f( (o dx

and
b

{rmdz=re -,

41

where ¢ and & are certain numbers lying between a and b&.
Example 1. Evaluate the integral

]/l-l-—sm‘xd.r

Solution. Since 0 < sin*x<< 1, we have
n m B3
F<I<3 ]/—-,

1.57 < I < 1.91.

i-...
gf_.-"‘jlll

that is,

2°, The mean value of a function. The number

is called the mean value of the function f(x) on the inferval a<<x<b.

1610*, Determine the signs of the integrals without evaluating
them:

x* dx; . 0©) S SinX dx.
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1611, Determine (without evaluating) which of the following
integrals is greater:

a) i]/l_—_l——? dx or § dx;
b) § x'sin*xdx or § x sin*xdx;
c) § erdx or f e*dx.

Find the mean values of the functions on the indicated inter-
vals:

1612, f(x)=x", O<x<.
1613. f(x)=a+ b cosx, — A< X< T
1614, [(x)=sin’x, I<x<m.
1615. f(x)=sin*x, O<<x<<m.
1616, Prove that é‘%wlies between %zO.GT and '—}—2,-_-2.,“

2~ 0.70. Find the exact value of this integral.

Evaluate the integrals:

n
1617. § ViFxax. 1620*, {x/tanx.
0 EO
S dx C sin x
1618. : 1621, (2% gy
8 L]
5: + ¥ _;_S_. X

2N
dx
1619. S 10-+3cos x°

1622, Integrating by parts, prove that

20071
0< S c%sfdx< T(Tlﬁr-:'

10N
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Sec. 7. The Areas of Plane Figures

1°. Area in rectangular coordinates. 1f a continuous curve is defined in
rectangular coordinates by the equation y=/f(x) [f(x)=0], the area of the
curvilinear trapezoid bounded by this curve, by two vertical lines at the

| d

y=r(z)

o
b

o a
Fig. 40 Fig. 41

points x=a and x==b and by a segment of the x-axis as<x<b (Fig. 40),
is given by the formula

b
s={rwax n

x'!

2,the

Example |, Compute the area bounded by the parabola y=
straight lines x=1 and x==3, and the x-axis (Fig. 41).

Y| rl

y=t(x)
1
T ) |
5 . I
/ 7 '
0 a b X
-2 y=fy(z)
Fig., 42 Fig. 43

Solution. The sought-for area is expressed by the integral

1

3
2
S:f- =4 —
S2dx 43.
1



154 Definite Integrals [Ch. 5

Example 2. Evaluate the area bounded by the curve x=2—y—y® and
the y-axis (Fig. 42).

Solution. Here, the roles of the coordinate axes are changed and so the
sought-for area is expressed by the integral

1
S= {@—y—yrdy=t 3,
—32

where the limifs of integration y,==—2 and y,=1 are found as the ordinates
of the points of intersection of the curve with the y-axis.

Fig. 44 Fig. 45

In the more general case, if the area S is bounded by two continuous
curves y=1{, (x) and y={,(x) and by two vertical lines x=a and x=b, where
Fi(x) <f;(x) when a<<x<<b (Fig. 43), we will then have:

b
S=$ 12 () — 1)) dx. @)

Example 3. Evaluate the area S contained between the curves

y=2—x and y?' =x* (3)

(Fig. 44),
Solution. Solving the set of equations (3) simultaneously, we find the
limits of integration: x,=—1 and x,=1. By virtue of formula (2), we obtain

1 5
S=S @—x*—x'lydx= (2x——%-—%x')l =2_5..1
-1

If the curve is defined by equations in parametric form x=gq(¢), y =9 (h,
then the area of the curvilinear trapezoid bounded by this curve, by twp
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vertical lines (x==a and x=»5), and by a segment of the x-axis is expressed
by the integral ;
3
s={vre ®a,

£y

where ¢, and f, are defermined from the equations
a=q(t,) and b=q{t,) (P ({)==0 on the interval [¢,, £,]].
Example 4. Find the area of the ellipse (Fig. 45) by using its paramelric
equations
X=acost,
{ y=~bsint,

Solution. Due to the symmetry, it is sufficient to compute the area of a
quadrant and then multiply the result by four. If in the equation x=acost

we first put x=0 and then x =a, we get the limits of integration t,z% and

t,=0. Therefore,
n

1
7

3
S =\ bsina(—sini) dt=ab5 sin? # df =22
0

4

ul'ﬁlf_—-"":.o

and, hence, S=mab.

2°, The area in polar coordinates. If a curve is defined in polar coordi-
nates bv the equation r-=f (), then the arca of the sector AOB (Fig. 46),
bounded by an arc of the curve, and by two radius vectors 0A and 0B,

Fig. 46 Fig. 47

which correspond to the values @,=a and @,=f, is expressed by the
integral

B
§=1 S[f (@)]* do.

2
a

Example 5. Find the area contained inside Bernoulli’s Ilemniscafe
r*=qa* cos 2¢ (Fig. 47).
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Solution. By virtue of the symmetry of the curve we determine first one
quadrant of the sought-for area:

n
P g a1 s _a
-4-8_-5 a cos2cpdcp_-2- ["f sianJ]o =

S —py&|3

Whernce S=al.

1623. Compute the area bounded by the parabola y=4x—x*
and the x-axis.

1624. Compute the area bounded by the curve y=Inx, the
x-axis and the straight line x=e.

1625*. Find the area bounded by the curve y=x (x—1) (x—2)
and the x-axis.

1626. Find the area bounded by the curve y*'=x, the straight
line y=1 and the vertical line x==8.

1627. Compute the area bounded by a single half-wave of the
sinusoidal curve y= sinx and the x-axis.

1628. Compute the area contained between the curve y=tanzx,

the x-axis and the straight line x=% .
1629. Find the area contained between the hyperbola xy=m?,
the vertical lines x=a and x=3a (@ >0) and the x-axis.

1630. Find the area contained between the witch of Agnesi
3
y-——x,a-—?‘;g and the x-axis.

1631 Compute the area of the figure bounded by the curve
y==x", the straight line y=28 and the y-axis.

1632. Find the area bounded by the parabolas y*=2px and
X" =2py.

1633. Evaluate the area bounded by the parabola y= 2x— x*
and the straight line y=— x.

1634. Compute the area of a segment cut off by the straight
line y=3—2x from the parabola y=x".

1635. Compute the area contained between the parabolas y=x*,
y=7 and the straight line y=2x.

1636, Compute the area contained between the parabolas

2
y=%~ and y=4~—%x'.

1637. Compute the area contained between the witch of

Agnesi y 1-|- ; and the parabola y—:-
1638. Compute the area bounded by the curves y==e*, ym=g=*
and the straight line x=1.
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1639. Find the area of the figure bounded by the hyperbola

5;—?—::1 and the straight line x=2a.
1640*. Find the entire area bounded by the astroid
2 2 2

1641. Find the area between the catenary

X
y=acosh—&-,

the y-axis and the straight line y=%(e'+ 1}.

1642, Find the area bounded by the curve a*y*=x*(a®*—x").
1643. Compute the area contained within the curve

(3) +(§)7 =1
1644. Find the area between the equilateral hyperbola x*—y*® =
=9, the x-axis and the diameter passing through the point (5,4).
1645. Find the area between the curve ¥=3, the x-axis,
and the ordinate x=1 (x> 1).
1646*. Find the area bounded by the cissoid y*=
and its asymptote x=2a (a>0).
1647*. Find the area between the strophoid y'=

its asymptote (a > 0).

1648. Compute the area of the two parls into which the
circle x*-+y*=8 is divided by the parabola y* =2x.

1649. Compute the arca contained between the circle x* + ¢* =16
and the parabola x*=12(y—1).

1650. Find the area contained within the astroid

x=acos’t; y=~bsin"f.

x!

2a—x

x (x—a)?
2a—x

and

1651. Find the area bounded by the x-axis and one arc of
the cycloid

{ x=a(t—sint),
y=a(l—cosi).
1652. Find the area bounded by one branch of the trochoid

{x=at-—b sin ¢,

y=a—bcost 0<b<a)

and a tangent to it at its lower points.
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1653. Find the area bounded by the cardioid

{ x=a (2 cos {—cos 2t),
y=a(2 sin t —sin 2¢).

1654*. Find the area of the loop of the folium of Descartes

3at 3at?
x=l—_}-:T,. y=l-j“|_'—!i-
1655*, Find the entire area of the cardioid r=a (1 + cosg).
1656*. Find the area contained between the first and second
turns of Archimedes’ spiral, r=ag
(Fig. 48).

1657. Find the area of one of the
leaves of the curve r==acos 2¢.

1658. Find the entire area bound-
ed by the curve r*=a® sin 4¢.

1659*. Find the area bounded by
the curve r=a sin 3.

1660. Find the area bounded by
Pascal’s limacon

r=2--cosg.
1661. Find the area bounded by the parabola r=a sec’%
and the two half-lines cp=%:— and tp=i;-.

o ; . p
1662. Find the area of the ellipse Fat wor oy (e<< ).

1663. Find the area bounded by the curve r=2acos3¢ and
lying outside the circle r=a.
1664*. Find the area bounded by the curve x*+ y*==x"+4y°

Sec. 8. The Arc Length of a Curve

1°, The arc length in rectangular coordinates. The arc length s of a curve
y=f (x) contained between two points with abscissas x=a and x=b is

b
s={ VTTyie

a

Example 1. Find the length of the astroid x*/®4 y**=a** (Fig. 49).
Solution. Differentiating the equation of the astroid, we get

Iy
Y
y xl,"
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For this reason, we have for th2 arc length of a quarter of the astroid:

{ a S g 3
Ts_Sl/l+x'(s dx-.-Sx,hdx 5 &
0 D
Whence s=6a.

2°, The arc length of a curve represented parametrically. If a curve is
represented by equations in parametric form, x=@(f) and y =¥ (), then the
arc length s of the curve is

{;
S:S -'/'xu_l_yrg dt.
t

where ¢, and f, are values of the parameter that correspond to the extremities
of the arc.

A

!
'Z-S

Fig 49 Fig. 50

Example 2. Find the length of one arc of the cycloid (Fig. 50)
{ x=a (t—sinf),

y=a(l—cost).
g dx dy
Solution. We have a?=a(l—-cos t) and =0 sinf, Therefore,
i an t
s=S Va’(l—cnst}’—i—a’sin’tdt=2aS sin?!-dt=8u.
0 /]

The limits of integration ;=0 and ¢{,=2x correspond to the extreme poinfs
of the arc of the cycloid.

If a curve is defined by the equation r=f(9p) in polar coordinates, then
the arc length s is

p
s=\ Vi de,
a

n{Ihere o and B are the values of the polar angle at the extreme points of
the arc,
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Example 3. Find the length of the entire curve r=asin® (P (Fig. 51)
The entire curve is described by a point as ¢ ranges from 0 to 3:1.

0 e i,
+ X
a
Fig. 5l
Solution. We have r’ =asin? g’ €os % , therefore the entire arc length of

fhe curve is

3t

2
3na

§= 2 gina 9P pogit Lsnet O g ia @ — )
_Y]/a Sin” —- +a" sin 3 0 3d¢_a§51n 740 ==

[+

1665. Compute the arc length of the semicubical parabola
y'=x* from the coordinate origin to the point x=4.

1666*. Find the length of the catenary y= acosh— from the

vertex A (0 a) to the point B (b,h).

1667. Compute the arc length of the parabola y=2}'x from
x=0 to x=1.

1668. Find the arc length of the curve y=e* lying between
the points (0,1) and (1,e).

1669. Find the arc length of the curve y=Inx from x=)3
to x=J/8.

1670. Find the arc length of the curve y=arcsin(e~*) from
x=0 to x=1,

1671. Compute the arc length of the curve x=Insecy, lying
between y=0 and y=%~ .

1672. Find the arc length of the curve x=7:—y’———;—1ny from
y=1 to y=e.
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1673. Find the length of the right branch of the tractrix

x=Va"—y*+aln sty a—y _"'

Ifromy atoy=>60<b<a).

1674. Find the length of the closed part of the. curve 9ay'=
= x (x— 3a)*.

1675. Find the length of the curve y-——ln(coth %) from x=a
to x=56 (O<<a<<h).

1676*. Find the arc length of the involute of the circle

x=a(cosi 4 sinf), . _
y=a(sint—1fcost) } from t=0 to =T,

1677. Find the lenglh of the evolute of the ellipse

2 2
x=% cos® f; y=—‘;— sin’f  (c*=a"'—b?).

1678. Find the length of the curve

x=a (2 cosf{—cos2t),
y=a(2 sin { —sin 2{).

1679. Find the length of the first turn of Archimedes’ spiral
r=ay.

1680. Find the entire length of the cardioid r =a(l + cosg).

1681. Find the arc length of that part of the parabola
r=asec’-gl which is cut off by a vertical line passing through
the pole.

1682. Find the length of the hyperbolic spiral r¢=1 from the
point (2.,'/,) to the point ('/,,2).

1683. Find the arc lenglh of the logarithmic spiral r=ae™®,
lying inside the circle r=a,.

1684. Find the arc length of the curve ¢= -(r+ ) from
=] to r=3.

Sec. 9. Volumes of Solids

1°, The volume of a solid of revolution. The volumes of solids formed by
the revolution of a curvilinear trapezoid [bounded by the curve yf (x), the
x-axis and two vertical lines x=a and x=0b] about the x- and 'y-axes are

6 — 1900
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expressed, respectively, by the formulas:

b b
1) Vy=n S yrdx; 2) Vy=2n S xydx *).
a a

Example 1. Compute the volumes of solids formed by the revolution of a
figure bounded by a single lobe of the sinusoidal curve y=sinx and by the

segment 0 <{x<Sm of the x-axis about: a) the x-axis and b) the y-axis.
Solution.

1 ot
a) anﬂSsin’xdx:-:-ﬁ- ;
L]

by

b) Vy=2n S x sin x dx = 2n (—x cos x--sin x)T' = 2",
o

The volume of a solid formed by revolution about the y-axis of a figure
bounded by the curve x=g (y), the y-axis and by two parallel lines y=c and
y=d, may be determined from the formula

d
Vy=mn S xtdy,

[

obtained from formula (1), given above, by interchanging the coordinates
x and y.

If the curve is defined in a different form (parametrically, in polar coor-
dinates, etc.), then in the foregoing formulas we must change the variable of
integration in appropriate fashion.

In the more general case, the volumes of solids formed by the revolution
about the x- and y-axes of a figure bounded by the curves y;=Ff, (x) and y, =/, (x)

[where f, () <<f,(x)], and the straight lines x=a and x=2») are, respectively,
equal to

b
Vy=n S (y3—y}) dx

a
and

b
Vy=2n S X (ys—4,) dx.

a

Example 2. Find the volume of a torus formed by the rotation of the
circle x* 4 (y—b)*=a® (b= a) about the x-axis (Fig. 52).

*) The solid is formed by the revolution, about the y-axis, of a curvilinear
traé)ezoid bounded by the curve y=f(x) and the straight lines x=a, x=0b,
and y=0. For a volume element we take the volume of that part of the solid
formed by revolving about the g-axis a rectangle with sides y and dx at a
dlstance;c from the y-axis, Then the volume element dVy=2nxydx, whence

Vy=2n S xy dx.

a
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Solution. We have :
Yy =b— Va'—x and y,=b+ Val—2
Therelore,
u N
vy=n { [0+ VE—2r—@—Va—ry)a=

a
(4]

— 4mb S V& — % dx = 2n2 a%

-

(the latter integral is taken by the substitution x =asint).

b
{

Fig 52

The volume of a solid obtained by the rotation, about the polar axis, of a
sector formed by an arc of the curve r=F(¢) and by two radius vectors
¢-=a, p=f may be computed from the formula

p
Vp=%-ngr‘ singd @.

a

This same formula is conveniently used when seeking the volume obtained
by the rotation, about the polar axis, of some closed curve defined in polar

coordinates.
Example 3. Determine the volume formed by the rotation of the curve

r=asin 2@ about the polar axis.

Solution.
KL =
| 2
- 2 1 g 4 s ] i -
Vp—-2--§- nS r smq;dq)_—-..ina S sin® 2@ sin @ dp =
1] L]
i §
K}
-_—3:;_2 na® S sin* ¢ cos® p dg =% na®,
(o 0
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2°, Computing the volumes of solids from known cross-sections. If S==S (x)
Is the cross-seciional area cut off by a plane perpendicular to some straight
line (which we lake to be the x-axis) at a point with abscissa x, then the
volume of the solid is

X
V= S S (x) dx,

x,

where x, and x, are the abscissas of the extreme cross-sections of the solid.

Example 4. D:termine the volume of a wedge cut off a circular cylinder
by a plane passing through the diameter of the base and inclined to the base
at an angle a. The radius of the base is R (Fig. 53).

Solution. For the x-axis we take th: diam2ter of the base along which
the cutting plane intersects the base, and for the y-axis we take the diameter
of the base perpendicular o it. The equation of the circumfierence of the base
Is 24+ y*=R2

The area of the section ABC at a distance X from the origin O is
S (x) =area AABC=—$ AB-BC=-%— yy tana :% tan a. Therefore, the sought-

for volume of the wedge is

R R
V=2-—;-5 y* tanddx:tanuS (R’—x’)dx=%tanaﬁ”.
'] U]

1685. Find the volume of a solid formed by rotation, about
the x-axis, of an area bounded by the x-axis and the parabola
y=ax—x"'(a>0).

1686. Find the volume of an ellipsoid formed by the rotation

of the ellipse ‘;—Z+-§:—=l about the x-axis.
1687. Find the volume of a solid formed by the rotation, about
the x-axis, of an area bounded by the catenary y=acosh=, the

x-axis, and the straight lines x= +a.

1688. Find the volume of a solid formed by the rotation, about
the x-axis, of the curve y==sin*x in the interval belween x=0
and x=m.

1689. Find the volume of a solid formed by the rotation, about
the x-axis, of an area bounded by the semicubical parabola y* = x°,
the x-axis, and the straight line x=1.

1690. Find the volume of a solid formed by the rotation of
the same area (as in Problem 1689) about the y-axis.

1691. Find..the volumes of the solids formed by the rotation
of an area bounded by the lines y=e*, x=0, y=0 about: a) the
x-axis and b) the y-axis.

1692, Find the volume of a solid formed by the rotation, about

the y-axis, of that parl of the parabola y*=4ax which is cut off
by the straight line x=a.



Sec. 9] Volumes of Solids 165

1693. Find the volume of a solid formed by the rotation, about
the straight line x=a, of that part of the parabola y* =4ax which
is cut off by this line.

1694. Find the volume of a solid formed by the rotation, about
the straight line y=—p, of a figure bounded by the parabola

y' =2px and the straight line x=% :

1695. Find the volume of a solid formed by the rotation, about
the x-axis, of the area contained between the parabolas y=x*
and y=)v.

1696. Find the volume of a solid formed by the rotation,
about the x-axis, of a loop of the curve (x—4a)y’ =ax(x—32)
(a>0).

1697. Find the volume of a solid generated by the rotation

s—— about its asymplote x=2a.

1698. Find the volume of a paraboloid of revolution whose
base has radius R and whose altilude is H.

1699. A right parabolic segment whose base is 2a and altitude &
is in rotation aboul the base. Delermine the volume of the result-
ing solid of revolution (Cavalieri’s “lemon”).

1700. Show (hat the volume of a part cut by the plane x=2a
off a solid formed by the rotation of the equilateral hyperbola
x*—y*=a' about the x-axis is equal to the volume of a sphere
of radius a.

1701. Find the volume of a solid formed by the rotation of a
figure bounded by one arc of the cycloid x=a (t—sint),
y=a(l-—cosf) and the x-axis, about: a) the x-axis, b) the y-axis,
and c) the axis of symmelry of the figure.

1702. Find the volume of a solid formed by the rotation of
the astroid x=acos®f, y=1>sin’¢ about the y-axis.

1703. Find the volume of a solid obtained by rotating the
cardioid r=a (1l 4-cos ¢) about the polar axis.

1704. Find the volume of a solid formed by rotation of the
curve r=acos’ @ about the polar axis.

1705. Find the volume of an obelisk whose parallel bases are
rectangles with sides A, B and a, b, and the altitude is 4.

1706. Find the volume of a right elliptic cone whose base is
an ellipse with semi-axes a and b, and altitude A.

1707. On the chords of the astroid xs+ y'hs=a’h, which are
parallel to the x-axis, are constructed squares whose sides are
equal to the lengths of the chords and whose planes are perpen-
dicular to the xy-plane. Find tHe volume of the solid formed by
these squares.

of the cyssoid y* =
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1708. A circle undergoing deformation is moving so that one
of the points of its circumference lies on the y-axis, the centre

describes an ellipse -;f,i—k%;:l, and the plane of the circle is

perpendicular to the xy-plane. Find the volume of the solid
generated by the circle.

1709. The plane of a moving triangle remains perpendicular
to the stationary diameter of a circle of radius a. The base ol
the triangle is a chord of the circle, while its vertex slides along
a straight line parallel to the stationary diameter at a distance A
from the plane of the circle. Find the volume of the solid (called
a conoid) formed by the motion of this triangle from one end of
the diameter to the other.

1710. Find the volume of the solid bounded by the cylinders
x*4-2'=a’ and y*+42"'=a’.

1711. Find tlje vc:]ume of the segment cut off from the ellip-
tic paraboloid %—}-%:x by the plane x=a.

1712. Find the volume of the solid bounded by the hyperbo-

loid of one sheet ‘—xl; -'rgéz-——wz—,:l and the planes z=0 and z=A/.
1713, Find the volume of the ellipsoid &5+ % 45 =1.

Sec. 10. The Area of a Surface of Revolution

The area of a surface formed by the rotation, about the x-axis, of an
arc of the curve y=7f (x) between the points x=a and x=b, is expressed by
the formula b

b

ds TR T

SX.:%Syadx;:mSy]fl-i—y’dx (1)
{a ]

(ds is the differential ol the arc of the curve).

vl

"Fig. 54 Fig. 55

If the equation of the curve is represented differently, the area of the
surface Sy is cbtained from formula (1) by an appropriate change of variables,
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Example 1. Find the area of a surface formed by' rotation, about the
x-axis, of a loop of the curve 94*=x (3 —~x)* (Fig. 54).
Solution. For the upper part of the curve, when 0<<x<<3, we have

y—-:L(B-—- x) ¥V x. Whence the differential of the arc ds=x+1 dx. From for-
3 2V x
mula (1) the area of the surface
o 41
' — X
S:?nS "3-(3—--’5] VX 5 V;dx=3u.

0

Example 2. Find the area of a surface formed by the rotation of one are
of the cycloid x=a (t—sint); y=a(l—cost) about its axis of symmetry
(Fig. b5).

gSolution. The desired surface is formed by rotation of the arc OA about
the straight line AB, the cquation of which is x=mna. Taking y as the inde-
pendent variable and noting that the axis of rotation
AB is displaced relative to the y-axis a distance ma, we
will have

b 1o
ds
8 =2:15 (na—x) 2 dy.
]

Passing to the variable {, we obtain
n

szznj (na—at +a sin {) ]/(%)=+(%)zdt=
1]

n
=2::S (nta—at +asint)2a sin—;—dtm

0
T

mdna’g (n sln-—l-‘--—-tsln —;——f—sin t sin —é—) df =

2

{ t t 4 f1n
= 2 il ot & 2
4na [ 21 cos 5 -+ 2f cos 3 4 sin -§-+ 3 sin -——2]0

1714. The dimensions of a parabolic mirror AOB are indicated
in Fig. 56. It is required to find the area of its surface.

1715. Find the area of the surface of a spindle obtained by
rotation of a lobe of the sinusoidal curve y=sinx about the
x-axis,

1716. Find the area of the surface formed by the rotation of

a part of the tangential curve y=tanx from x=0 to x-—-%—,

about the x-axis.
1717. Find the area of the surface formed by rotation, about
the x-axis, of an arc of the curve y=e-*, from x=0 to x=--o0.
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1718. Find the area of the surface (called a cafenoid) formed

by the rotation of a calenary ynacosh% about the x-axis from
x=0 to x=a.

1719. Find the area of the surface of rotation of the astroid
x'I* - y'l*=qa"" about the y-axis.

1720. Find the area of the surface of rotation of the curve
x=-‘1¥y'——%lny about the x-axis from y=1 to y=e.

1721*, Find the surface of a torus formed by rotation of the
circle x*+(y— b)* =a® about the x-axis (6> a).
1722, Find lhe area of the surface formed by rotation of the

ellipse l::+5—£’;2=1 about: 1) the x-axis, 2) the y-axis (a>b).

1723. Find the area of the surface formed by rotation of one
arc of the cycloid x=a(f{—sin{) and y=a (1l —cos f) about: a) the
x-axis, b) the y-axis, ¢) the tangent to the cycloid at its highest
point.

1724, Find the area of the surface formed by rotation, about
the x-axis, of the cardioid

x=a (2 cos {—cos 2{),
Yy =a (2 sin {—sin 2f).

1725. Determine the area of the surface formed by the rotation
of the lemniscate * =a*cos 2¢ about the polar axis.

1726. Determine the area of the surface formed by the rotation
of the cardioid r =2a (1 +cos ) aboutl the polar axis.

Sec. 11. Moments. Centres of Gravity. Guldin’s Theorems

1°. Static moment. The sfafic moment rclative to the [-axis of a material
%oint Ad having mass m and at a distance d from thz l-axis is the guantity
(= ma.
The static moment relative to the [-axis of a system of n material points
with masses m,, m,, ..., m, lying in the plane of the axis and at distances
dy, dy, ..., d, is the sum

n
M= Y md;, ()

i=1

where the distances of points lying on one side of the l-axis have the plus
sign, those on the other side have the minus sign. In a similar manner we
define the static moment of a sysiem of points relative to a plane.

If the masses continuously fill the line or figure of the xy-plane, then the
static momerts My and My about the x- and y-axes are expressed {respective-

ly) as integrals and not as the sums (1). For the cases of geometric figures,
the density is considered equal to unity.
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In particular: 1) lor the curve x=x(s); y =y (s), whare the parameter s
[s the arc length, we have
L L

Mx={y(ds My={x(9ds @

o

(ds= V ([dx)*+ (dy)? is the differential of the arc);

Y
b
B,
X
0| a X

Fig. 57

2) for a plane figure bounded by th2 curve y=y (x), the x-axis and two
vertical hines x=a and y=:b, we obtain

b b
I »
Mx=§gylyldx: My='sxly|dxo 3)
a a
Example 1. Find the static moments about the x- and y-axes of a triangle
bounded by ths straight lines: %-{-%—: 1, x=0, y=0 (Fig. 57)

Solution, Here, y=2>5 (1 ——-;—) . Applyirg formula (3), we obtain

and
* 7 x a*h
0
2°. Moment of inertia. The moment of inertia, about an {-axis, of a mafe.
rial point of mass m at a distance d from the (-axis, 15 the number /, =md?,

The moment of snertia, about an [-axis, ol a system ol n material points
with masses m,, my, ..., m, 1s the sum

= mahs

i=1
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where d,, d,..., d, are the distances of the points from the I-axis. In the
case of a continuous mass, we get an appropriate integral in place of a sum.

Example 2. Find the moment of inertia of a triangle with base b and
altitude A about its base.

Solution. For the base of the triangle we take the x-axis, for its altitude,
the y-axis (Fig 58).

Divide the triangle into infinitely narrow horizontal strips of width dy,
which play the role of elementary masses dm. Utilizing the similarity of
triangles, we obtain i

—y

and
dlx=y’dm=% ¥ (h—y) dy.
Whence

h
Ix== % S y* (h—y) dy:-l-lg bh?.
0

3°, Centre of gravity. The coordinales of the centre of gravity of a plane
figure (arc or area) of mass M are computed from the formulas
- My -—
=R YT M
where My and My are the static moments of the mass. In the case of geomet-
ric figures, the mass M is numerically equal to the corresponding arc or area.

For the coordinates of the centre of gravity (x, y) of an arc of the plane

curve y=f (x) (e<<x=Cb), connecting the points Ala, f(a)l and BI[b, f(b)],
we have

B t 8 b
Sxds S xV 14-(y')dx gyds gy Vl—t—{y")"’dx
;:A :a !}-:A 4
'8 b ' s b ’
S Vit(y)tde S VIt ds
u [#]

The coordinates of the centre of graviify (x, y) of the curvilinear trapezoid
ssx<b, 0 y=<f(x) may be computed from the formulas

b
Sxy dx
a

3 =

=

b
1 2
—é-gy dx
=28 =
S ’

b
where S=Sydx is the area of the flgure.

[
There are similar formulas for the coordinates of the centre of gravity of
a volume.

Example 3. Find the centre of gravity of am arc of th i
¥4 y*=a% (y=0) (Fig. 59). =l re of the semicircle
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Solution. We have

Y= V‘a!u—-xz; gy =

—X

al___xﬂ

and
ds =V l-[—(y')’dx:—-——a-di-—.
Vat—4t
Whence
i
¥ ax
M}'—-—- j xds— ( md‘{—fo,
Za
(7] o
— Vo 4dx o,
My (ydq -= 5 Vﬂ X V.n’—x’ = 2at,
-:H Lu
‘ d
» a '\,
M s -ﬁ?———::‘? JTet.
—-a
Hence,
x=0; y= : a
=0; y=xa

4°, Guldin’s theorems.

Theorem 1. The area of a surface obtained by the rotation of an arc of

a plane curve about soine axis lying in the same

plane as the curve and not

intersecting it is equal to the product of the length of the curve by the
circurnference of the circle described by the centre of gravity of the arc of

the curve.

Theorem 2. The volume of a solid obtained by rotation of a plane figure
about some axis lying in the plane of the figure and not intersecting it is
equal to the product of the area of this figure by the circumference of the
circle described by the centre of gravity of the figure.

v

ds
0 C(T,])
-a 0 a X
Fig. 59

1727. Find the static moments about the coordinate axes of
a segment of the sfraight line

lying between the axes.
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1728. Find the static moments of a rectangle, with sides a and b,
about its sides.

1729. Find the static moments, about the x- and y-axes, and
the coordinates of the cenire of gravity of a triangle bounded by
the slraight lines x + y=a, x=0, and y=0.

1730. Find the static moments, about the x- and y-axes, and
the coordinates of the centre of gravity of an arc of the asiroid

2
x* 4y
lying in the first quadrant.

1731. Find the stalic moment of the circle

r=2asing

L 2
3 =qT.

about the polar axis.

1732. Find the coordinates of the centre of gravity of an are
of the catenary

P 4
y=acosh =

from x=—a to x=a.
1733. Find the cenlre of gravity of an arc of a circle of radius a
subtending an angle 2a.

1734. Find lhe coordinates of the centre of gravily of the arc
of one arch of the cycloid

x=a(l—sin?); y=a(l—-cos{).
1735. Find the coordinates of the centre of gravity of an area

bounded by the ellipse —;—:+ i—::l and the coordinate axes (x =0,
y=0).

1736. Find the coordinates of the centre of gravity of an area
bounded by the curves

y=x', y=1Vx

1737. Find the coordinates of the centre of gravity of an area
bounded by the first arch oi the cycloid

x=a(t—sint), y=a(l —cost)
and the x-axis.
1738**. Find the centre of gravity of a hemisphere of radius a

lying above the xy-plane with centre at the origin.

1739**. Find the centre of gravity of a homoseneous right
circular cone with base radius r and allitude A.

1740**. Find the cenire of gravity ol a homogeneous hemi-

sphe_re of radius a lying above the xy-plane with centre at {he
origin.
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1741. Find the moment of inertia of a circle of radius a about
its diameler,

1742, Find the moments of inertia of a rectangle with sides
a and b about its sides,

1743. Find the moment of inertia of a right parabolic segment
with base 26 and allilude & about its axis of symmetry.

1744. Find the moments of inertia of the area of the ellipse

x2 Y v o
-+ +3: =1 about its principal axes,

1745**. Find the polar mement of inertia of a circular ring
with radii R, and R, (R,<R,), that is, the moment ol inertia
about the axis passing through the cenire of the ring and perpen-
dicular to its plane.

1746**. Find the moment of inertia of a homogeneous right
circular cone with base radius R and altitude H about its axis.

1747**, Find the moment ol inertia of a homogeneous sphere
of radius a and of mass M about its diameter.

1748. Find the surlace and volume of a torus obtained by
rotating a circle of radius a about an axis lying in its plane
and at a distance b (b >a) from its centre.

1749. a) Determine the position of the cenire of gravity of

an arc of the astroid x* + y* =a* lying in the first quadrant.

b) Find the cenire of gravity of an area bounded by the curves
y'=2px and x*=2py

1750**, a) Find the cenfre of gravily of a semicircle using
Guldin’s theorem.

b) Prove by Guldin's theorem that the centre of gravity of
a triangle is distant from ils base by one third of its allitude

Sec. 12. Applying Definite Integrals to the Solution of Physical Problems

1°. The path traversed by a point. Il a point 15 1n motion along some
curve and the absolute value of the velocily v=1}({) is 2 known function of
the (ime {, then the palh 1iraversed by the point in an interval of time
it 1] is
{5
5= S f ) dt.
&

Example 1. The velocity of a point is

p=0.11* mjsec.

Find the path s covered by the point in the interval of fime T =10 sec follow.
ing the commencement ol motion. What is the mean velocity oI motion
during this inlerval?
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Solution. We have:

10 —
s=SD.lt'dt=0.1 T = 250 metres
1]
0

and

Usisati = -S,I:-z 25 m/sec.

2°. The work of a force. If a variable force X =] (x) acts in the direction
of the x-axis, then the work of this force over an interval [x,, x,] is

Example 2. What work has to be performed to streich a spring 6 cm, if
a force of 1 kgf stretches it by 1 cm?

Solution, According to Hook's law the force X kgf stretching the spring
by x, is equal to X =kx, where & is a proportionality constant.

Putting x=0.01 m and X =1 kgl, we get =100 and, hence, X = 100v.

Whence the sought-for work is

0.06 0.08
Aes S 100 xdx=50x2| =0.18 kgm

3°. Kinetic energy. The kinetic energy of a malerial point of mass m and
velocity v is defined as
mY!
5

The kinefic energy of a system of an material points with masses
my, my, «.., m, having respective velocities v,, v,, ..., v, is equal to

K=

mv}
=

(1)

To compute the kinetic energy of a solid, the latter is appropriately parli-
tioned into elementary particles (which play the part of material points); then
by summing the kinetic energies of these particles we get, in the limit, an
integral in place of the sum (1).

Example 3. Find the kinetic energy of a homogeneous circular cylinder
of density & with base radius R and altitude % rotating about its axis with
angular velocity w.

Solution. For the elementary mass dm we take the mass of a hollow
%linhder of altitude h with inner radius r and wall thickness dr (Fig. 60).

e have:

dm = 2nr - hd dr.

Since the linear velocity of the mass dm is equal to v=ro, the elementary
kinetic energy is

_ vidm

dK = 5= nr’w?hd dr,
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Whence

R
K=nn*hd S r’dr=w .

4°, Pressure of a liquid. To compute the force of liguid pressure we use
Pascal’s law, which states that the force of pressure of a liquid on an area 8
at a depth of immersion A is

p= ?hsl

where vy is the specific weight of the liquid.

o

dr r
1
T = r Bt —
h = 12 __TW A
He=F=d l i _
P e — S —— ———
e Iy
Fig. 60 Fig 6]

Example 4. Find the force of pressure experienced by a semicircle of
radius 7 submerged vertically in water so that its diameter is flush with the
water surface (Fig 61).

Solution, We partition the area of the semicircle into elements—strips
parallel to the surface of the water. The area of one such element (ignoring
higher-order infinitesimals) located at a distance A from the surface is

ds=:2xdh =2 V r*—h? dh.

The pressure experienced by this element is
dP=vyhds=2yh V r*—hidh,

where y is the specific weight of the water equal to unity.
Whence the entire pressure is
I r

p=2 S h V=R dh= — 2 (=t

(f] 0

2'
'3*!.

1751. The velocity of a body thrown vertically upwards with
initial velocity v, (air resistance neglected), is given by the
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formula
v=uv,—gl,

where ¢ is the time that elapses and g is the acceleration of grav-
ity. At what dislance from the iniiial position will the body
be in ¢ seconds from the time it is thrown?

1752. The velocity of a body thrown vertically upwards with

initial velocity v, (air resistance allowed for) is given by the
formula

v:c-tan(——%t-{—arctan %‘) ;

where # is the time, g is the acceleration of gravity, and c is
a constant, Find the altitude reached by the body,

1753. A point on the x-axis performs harmonic oscillations
about the coordinale origin; its velocity is given by the formula

0 =1y, COS wlf,

where ¢ is the time and v,, © are constants.

Find the law of oscillation of a point if when #=0 it had
an abscissa x=0. What is the mean value of the absolute magni-
lude of the velocity of the point during cne cycle?

1754. The velocity of motion of a point is v=/fe=*°" m/sec.
Find the path covered by the point from the commencement of
motion to full stop.

1755. A rocket rises vertically upwards. Considering that when
the rocket thrust is constant, the acceleration due to decreasing

weight of the rocket increases by the law ;:—-aébt (a— bt >0),

find the velocity at any instant of time f, if the initial velocity
is zero. Find the altitude reached at timz =1 .

1756*. Calculate the work that has lo be done to pump the
water out of a vertical cylindrical barrel with base radius R and
altilude H.

1757. Calculate the work that has to be done in order to pump
the water out of a conical vessel with vertex downwards, the
radius of the base of which is R and the altitude H.

1758. Calculate the work to be done in order to pump water
out of a semispherical boiler of radius R=10 m.

1759. Calculate the work nesdad to pumpn oil out of a tank
through an upper opening (the tank has the shape of a cylinder
with horizontal axis) if the specific weight of the oil is y, the
length of the tank H and the radius of the base R.

1760**. What work has to be done to raise a body of massm
from the earth’s surface (vadius R) to an altitude #? What is
the work if the body is removed to infinity?
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1761**. Two electric charges e,= 100 CGSE-and ¢, =200 CGSE
lie on the x-axis at points x,=0 and x,=1 cm, respectively.
Whalmwork) will be done if the second charge is moved to point
x, =10 cm:

*1762%*, A cvlinder with a movable piston of diameter D =20 em
and length [=80 cm is filled with steam at a pressure
p=:10 kgf cm®. What work must be done to halve the volume of
the sleam with temperature kept constant (isolhermic process)?

1763**, De'ermine the work performed in the adiabatic expan-
sion of air (having inilial volume wv,=1 m’ and pressurs
p,=1 kgijcm®) to volume v,=10 m®

1764**, A vertical shaft of weight P and
radius a resls on a bearing AB (Fig. 62).
The frictional [orce belween a small part o
of the base of the shalt and the surface of
the support in contact with it is F=ppo,
where p=const is {he pressure of the shaft
on the surface of the support referred to
unit area of the support, while p is the ccef-
ficienl of friction. Find {he work done by the
frictional force during one revolution of the
shaft.

1765**, Calculate the kinetic energy of a
disk of mass M and radius R rotating with
angular velocitly o about an axis that passes through its centre
perpendicular to its plane.

1766. Calculate the kinetic encrgy of a right circular cone of
mass M rotaling with angular velocity ® about its axis, if the
radius of the base of the cone is R and the altitude is H.

1767*, What work has to be don: to stop an iron sphere of
radius R =2 melres rotating with angular velocity o =1,000 rpin
about its diameter? (Specific weight of iron, y=7.8 g/cm”.)

1768. A verlical trianzle with base & and altilude A is subs
merged vertex downwards in waler so that its base is on the
surface of the waler. Find the pressure of the water,

1769. A vertical dam has the shipa of a irapezoid. Calculate
the water pressure on the dam if we know that the upper base
a=70 m, the lower base 6 =50 m, and the height A=20 m,

1770. Find the pressure of a liquid, whose spzcific weight is vy,
on a vertical citipse (with axes 2a and 2b) whose centre is sub-
merged in the liquid to a distance A, while the major axis 2a
of the ellipse is parallel to the level of the liquid (h = ).

1771. Find the water pressure on a verlical circular cone
with radius of base R and altifude H submarged in wa.er verlex
downwards so that ils base is on the surface of the waier.




178 Definile Integrals [Ch. &

Miscellaneous Problems

1772. Find the mass of a rod of length /=100 cm if the linear
density of the rod at a distance x cm from one of its ends is

6§=2-+0.001 x* g/em.

1773. According to empirical data the specific thermal capacity
of water at a temperafure £°C (0 <<f<100° is

¢c=0.,9983 —b6.184x 105 4+6.912x 10-7 £*,

What quanlity of heat has to be expended to heat 1 g of water
from 0°C to 100°C?

1774. The wind exerls a uniform pressure p g/cm® on a door
of width b cm and height A cm. Find the moment of the pressure
of the wind striving to turn the door on its hinges.

1775. What is the force of attraction of a material rod of
length [ and mass M on a material point of mass m lying on
a siraight line with the rod at a distance a from one of its ends?

1776**. In the case of steady-state laminar flow of a liquid
through a pipe of circular cross-section of radius a, the velocity
of flow v at a point distant r from the axis of the pipe is given
by the formula

P e 2
U—4M(a r,

where p is the pressure difference at the ends of the pipe, p is
the coefficient of viscosity, and ! is the length of the pipe.
Determine the discharge of liquid Q (that is, the quantity of
liquid flowing through a cross-section of the pipe in unit time).

1777*. The conditions are the same as in Problem 1776, but
the pipe has a rectangular cross-section, and the base a is great
compared with the altitude 2b. Here the rate of flow v at a point
M (x,y) is defined by the formula

U=§%[b3——(b—y)'].
Determine the discharge of liquid Q.

1778**, In studies of the dynamic qualities of an automobile,
use is frequently made of special types of diagrams: the veloci-
ties v are laid off on the x-axis, and the reciprocals of correspond-
ing accelerations @, on the y-axis. Show that the area S bounded
by an arc of this graph, by two ordinates v=v, and v=uv,, and
by the x-axis is numerically equal to the time needed to increase

the velocity of motion of the automobile from v, to v, (accelera-
tion time),
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1779. A horizontal beam of length [ is in-equilibrium due to
a downward vertical load uniformly distributed over the length

of the beam, and of support reactions A and B(A=B=%) ;

directed vertically upwards. Find the bending moment M, in
a cross-section x, that is, the moment about the point P with
abscissa x of all forces acting on the portion of the beam AP,

1780. A horizontal beam of length [ is in equilibrium due to
support reactions A and B and a load distributed along the
length of the beam with intensity g=#kx, where x is the distance
from the left support and & is a constant factor. Find the bend-
ing moment M, in cross-section x.

Note. The intensity of load distribution is the load (force)} referred to
unit length.

1781*, Find the quantity of heat released by an alternating
sinusoidal current

I =1, sin (QTEf—(p)

during a cycle T in a conductor with resistance R,



Chapter VI
FUNCTIONS OF SEVERAL VARIABLES

Sec. 1. Pasic Notiens

1°. The concept of a function of several variables. Functioral notation,
A variable quantity z is called a single-valued function of two variables x,
y, if to each set of their values (x, ¢) in a given range there corresponds a
unique value of 2z The variables x and y are called arguments or independent
variubles. The functional relation is denoted by

2'=f(.t, y]'

Similarly, we define functions of three or more arguments.

Fxample 1. Express the volume of a cone V as a function of ifs gen-
eratrix x and of its base radius y

- Solution, From geometry we know that the volume of a cone is

o P
V—Bnyh,

where £ is the altitude of the cone. But h= Vx‘—y’. Hence,
1 —_—
z| 2Z=f(z,y) V=g ay? Vai— 2

This is the desired functional relation.
The value of the lunclion z=/}(x.y) at a
pornt P (a.b), that is, when x==a and y=25,

| is denoted by [ (a,b) or [(P) Generally speak-
lz ing, the gecometric representation of a fune-
0 s tion like z=17T(x,y) in a rectangular coordi-
) nate system X, Y, Z is a surface (Fig. 63).
L prz,y) Example 2. Find | (2, —3) and}(l, -‘;-) it
X x4yt
Fig. 63 Py ==

Solution. Substituting *r=2 and y=—3, we find

a2+ (=3)*_ 13
12, d)——*—-——2_2.l_3)———-12.



Sec. 1) Basic Notions 181

Putting x=1 and replacing y by j!:—- we will have

Yy 2
! ‘i)_l+(7) X4y
f(lx _2'1(1*‘_)_ 2*9,

P 4

that is, f(l. %):f{x. y).

2°. Domain of definition of a function. By the domain of definition of a
function 2= f(x, y) we understand a set of points (x, y) in an xy-plane in
which the given function is defined (that is to say, in which 1t takes on del-
inite real values) In the simplest cases, the domain of definition of a func-
tion is a finite or infinite part of the xy-plane bounded by one or several
curves (the boundary of the domain).

Simnlarly, for a function of three variables u=f(x, y, 2) the domain of
definition of the function 1s a volume in xyz-space.

Example 3. Find the domain of definition of the function

Solution. The function has real values if 4—x*—y? >0 or x®4- ¢ < 4,
The latter incquality is satisfied by the ccordinates of points lying inside a
gircle of radius 2 with centre at the coordinate oriwin. The domain of defi-
nition ol the function is the interior of the circle (Fig 64).

Fig. 64 Fig 65

Example 4. Find the domain of definition of the function
z=arc sin ‘7} 4~ Vﬂ;

Solution. The first term of the function i1s defined for —1 -s;-g—s;l or

—2<<x<<2. The second term has real values if xy=0, t.e., in two cases:

when { ;ZS' or when { ;28 . The domain ol definition of the entire

function is shown in Fig. 65 and includes the boundaries of the domain.
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3°, Level lines and level surfaces of a function. The level line of a func-
tion z=F(x, y) is a line f(x, y)=C (in an xy-plane) at the points of which
the function takes on one and the same value z=C (usually labelled in
drawings).

The level surface of a function of three arguments u={(x, y, 2) is a sur-
face f(x, y, 2y=C, at the points of which the function takes on a constant
value u=~C.

y ‘ Example 5. Construct the level lines of
the function z=x%y.
Solution. The equation of the level lines

c
2 has the form x*y=C or y= -3
Putting C=0, + 1, +£2, ..., we get a family
(% of level lines (Fig. 66),
Qfﬁ- 1782. Express the volume V of a
C=-2 ! regular tetragonal pyramid as a func-

tion of its altitude x and lateral edge y.
1783. Express the lateral surface S
of a regular hexagonal truncated pyra-
Fig. 66 mid as a function of the sides x and gy
of the bases and the altitude 2.
1784. Find f(1/2, 3), f(1, —1), if

Fi y)=xy+ .
. 1 I 1 2
1785 2Fm=d [(@.%), [F(—=x, —y), f(?? ?), TNk if
oy ="5"
1786. Find the values assumed by the function
f(xs y)=1+x—y
at points of the parabola y=x", and construct the graph of the

function
F(x)=[(x, x*).
1787. Find the value of the function
Z_f+kw+¢

T l—e—g

at points of the circle x*-y* =R"*.
1788*. Determine f(x), if

P(4)=Y2E 4> 0.

1789*. Find f(x, y) if
x4y, x—y)=xy+ 4.
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1790%, Let z= ]/_+f(|/x——l) Determine the functions f and
z if z=x when y=1.

1791%*. Let z=xf(%). Determine the functions f and z if
2=V 144" when x=1.

1792. Find and sketch the domains of definition of the fol-
lowing functions:

a) z=]/l~—x‘—-y’; i) 2=V ysinx;

b) z=14+V —=(x—p)% ) z=In(x"4y);
¢) z=In(x+y); k) z=arctang *—2;
d) z=x--arccos y; 1 b +xty
e) z=]/l—-x’+]/l—-y’; 1) =m +Jai
f) z=arcsinZ ; m) 2= ——0-—__ !
X o V!—V'}—'

g 2=V —d4+Vi—y, :
h 2=V @ Fr—a) d —r—5 W 2o +y

(@> 0y, 0) 2}/ sin (x* + ).

1793. Find the domains of the following functions of three
arguments:

a) u=Vx+Vy+Vz c) 1 == arc sin x +- arc sin y 4+ arc sin z;
b) u=In (xy2): d) u=V1—x—y*—2,

1794. Construct the level lines of the given functions and de-
fermine the character of the surfaces depicted by these functions:

a) z2=x+y; d) z=V xy, g)z—x“
b) z=x"4+4" e)z=(1+x+p* h)z=-L .
) Yy ) (1 +x+y) 1) 2 o~

2x

I S 1) e Vi | e e g2 [ N e
¢) 2=5X y; fy z=1 lx[ lyl, 1) Z——m.

1795. Find the level lines of the following functjons:
a) z=In( +y) d) 2=f(y—ax);

b) 2= arc sin xy, e) zzf(i).

) z=f (V¥ ) ’

1798. Find the level surfaces of the functions of three inde-
pendent variables:

a) U=X+y-i-2;

b) u=x*+4y* 2%
c) u=x"4y 0 — 2",
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Sec. 2. Continuity
1°. The limit of a function. A number A is called the limit of a function

2=[(x, y) as the point P’'(x. y) approaches the point P (a. ). if for any

g > 0 there is a & > 0 such that when 0 < p < 8, where p= V (x—a)* + (y — b)
is the distance between P and P‘, we have the inequality

f(x, )—A| <e.

In this case we write
lim f(x, y)=A.

X=—+a
y—=+b

2°, Continuity and points of discontinuity. A function z2=f (x, y) is called
continuous at a point P (a, b) il

lim f(x, y)={(a, b).
yab

A Tunction that is continuous at all points of a given range is called
continwous over this range

A function [({x, y) may cease to be continuous either al separate points
(isolated point of discontinuify) or at poinis thal form one or several lines
(lLines of discontinuity) or (at times) more complex geometric objects.

Example 1. Find the discontinuities of the funciion

z__xy+!

'___1,3-—_[)‘ 5

Solution. The function will be meaningless il the denominator becomes
zero. But x*—y=0 or y=x* is the equation of a parabola. Hence, the given
function has for its discontinuity the parabola y=x2

1797*. Find the following limits of functions:

. | . Sinxy . x
a) lim(x*+¢y*)sin—; ¢) lim : e) lin .
) x—Hl( J ) Xy ’ ) X=19 x ) x—»ox'l'y '
TR ] u—+2 >0
. X4ty : y\* o gt
b) lim ——=; d) lim (l Ed: DU ==,
) g oAb e x.) B x =00
Y >® bR y—>0

1798. Test the following function for continuity:

_JV1—=x"—=5 when x*+ 4 <1,
F, 9) { 0 when x* +y* > 1.

1799. Find points of discontinuity of the functions:

a) z=ln V¥ +y: ¢ 2=—

i

: —cos -
b)2=m, d)z—-COSMj.
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1800*. Show that the function

2xy % ]
m when x —|—y 5&0,
0 when x=y=0

_!
=1

is continuous with respect to each of the variables x and y sepa-
rately, but is not continuous at the point (0, 0) with respect to
these variables together.

Sec. 3. Partial Derivatives

1°. Definition of a partial derivative. If z=f(x, y), then assuming, for
example, y constant, we get the derivative

aZ___ : f(x+Ax. y)_f(xly)_ 2
&S, A el

which is called the partial derivative of the function z with respect to the
variable x. In similar fashion we define and denote the partial derivative of
the function z with respect to the variable y It is obvious that to find partial
derivatives, one can use the ordinary formulas of differentiation.

Example 1. Find the partial derivatives of the function

z=lntani.
]

Solutlon, Regarding y as constant, we get
0z 1 1 ! 2

E"—

X _ X 2x
tan — cos? — ysin—
Yy Yy Yy

Similarly, holding x constant, we will have

0z 1 1 ( x) 2x
— . —— —_— p
tanY cost X Y y® sin 2

y y U

Example 2. Find the partial derivatives of the following function of three
arguments:

u=x*z 4 2x—3y+2+45,

1]
Solution. -a—;c_‘%x w24 2,

du .,
32—
au— 3,2
R

2°, Euler’s theorem. A function f(x, y)is called a homo :eneous function of
degree n il for every real factor 2 we have the equality

[ (kx, ky) = k" (x, ©)
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A rational

integral function will be homogeneous if all its terms are of one

and the same degree.
The following relationship holds for a homogeneous differentiable function

.of degree n (Euler’s theorem):

xfy (%, 9) -+ of, (%, y) =nf (%, y).

Find the partial derivatives of the following functions:

1801. z=x"+y'—3axy. 1808. z=
=¥ sin £
1802. =y 1809, z=¢"" *,

3. z=1, N r—y
1803. 2z g 1810. z=arcsin l/x’+y"
1804. 2=} x'—y". 1811. z=1n sin‘l"—Vi_—‘_'.
1805, z=——e , L

Vety 1812, u=(xy)*.
1806. z=1In(x+V ¥ +55). 1813. u=2¥.
1807. z=arctan% ¢

1814,
1815.

Find f,(2, 1) and (2, 1) if F(x 9)=/ xg+
Find fx(1,2,0), f,(1,2,0), f.(1,2,0) if
f(x: Y, Z)=lﬂ (xy-}—i,")

X
y -

Verify Euler’s theorem on homogeneous functions in Exam-
ples 1816 to 1819:

1816.
1817.

1820.

1821,

1822.

1823.
1824.
1825.

%, §) = Ax*-+ 2Bxy—Cy’. 1818, f(x, y) = — 14
f(‘ Y) + 2Bxy—Cy f(x, y) e L
2=}?§.“5' 1819. f(x,y)=In< .
Find a}(ria), where r =)/ x*+ y* + 2.

x Ox

Calculate !3; 3;? yif x=rcos g and y=rsing.
ar Og
0z o0z 7
Show that x5ty 5!—’—12. if z=In(x"+xy+y%).

Show that x@-{— 2 if =
3 yay—xy—i—z,l 2=xYy-+xe

du , du , @ .
Show that 3;+a—y+a—‘;=o, if u=(x—y)(y—2)@—nx).

du , Ou , Ou X—
Show that Z+31+5 =1, if u=x+y___’;’.

1826, Find z=2z(x, y), it Z=—"*

P L
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1827. Find z=-2(x, y) knowing that

2 2
g__;___i% and z(x, y)=siny when x=1.

1828. Through the point M (1, 2, 6) of a surface z=2x"4-4*
are drawn planes parallel to the coordinate surfaces X0Z and
YOZ. Determine the angles formed with the coordinate axes by
the tangent lines (fo the resulting cross-sections) drawn at their
common point M.

1829. The area of a trapezoid with bases a and b and alti-
tude £ is equal to S="/(a-}-b)h. Find g—f, ?}%, g% and, using
the drawing, determine their geometrical meaning.

1830*. Show that {he function

f(x, y)_-..l ﬁ%s il x*+4-y*0,
l 0| if x:yzo,

has partial derivatives fe(x, y) and f;, (x, y) at the point (0, 0),
although it is discontinuous at this point. Construct the geomet-
ric image of this function near the point (0, 0).

Sec. 4. Total Differential of a Function

1°. Total increment of a function. The {ofal increment ol a funclion
z=f(x, y) is the difference

Az = Af (x, y)-=f (x4- Ax, y+ Ay)—[ (x, y).

2°, The total differential of a function. The {fofal (or exact) differential of
a function z={(x, y) is the principal part of the total increment Az, which
is linear with respect to the increments in the arguments Ax and Ay.

The difference between the total increment and the total differential of
the function is an infinitesimal of higher order compared with g= V Axf+F Ag®.

A function definitely has a total differential if its partial derivatives are
continuous. If a function has a total differential, then it is called differen-
liable. The differentials of independent variables coincide with their incre-
ments, that is, dx=Ax and dy= Ay. The total differential of the function
z=f (x, y) is computed by the formula

dz:g%dx-}—g—idy,
Similarly, the total differential of a function of three arguments u=f{(x, y, 2)
is computed from the formula
du=%dx+3—‘;dy+ad—zdz.
Example 1. For the Tunction
[ g)=x*txy—y
find the total increment and the total differential.
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Solution. [ (x4 Ax, g+ Ay) = (x4 Ax)* + (x -+ Ax) (y + By)—(y + Ay)%
Af (x, y)== l(r+ﬁx)‘+tr+&x1(y+&y)—-U+A1) | — (¢ +xy—y*) =
Ax 4+ Bx2 4 x-Ay+ y-Ax+ Ax-Ay—2y-Ay—Ay* =
(@t ) Axt 0 Byl + (As* - b BgP),

Here, the expression df =(2x +y) Ax—ksx——z;) Ay is the total differential of
the function, while (Ax*+ Ax-Ay—Ay?) is an infinitesimal of higher order
compared with V A F Ayl

Example 2. Find the total differential of the function

2= V-x’+y.

Solution. i—:——-—; b V. S

X
e S e,
Vite  Votg ' Virs

3°. Applying the to!al differential of a function to approximate calculations,
For sufficien‘ly small |Ax| and | Ay] and, hence, for sufficiently small

o=V A2+ Ay?, we have for a differentiable function z=f (x, y) the approx-
imate equality 'Az==dz or

dz dz
Az =~ a‘—r Ax +"a-; Ay.

Example 3. The altitude of a' cone is H =30cm, the radius of the base
R=10cm. How will the volume of the cone change, il we increase H by
3mm and diminish R by | mm?

Solution, The volume of the cone is V=%nR’H. The change in volume
we replace approximately by the differential

AV&dV=-13- % (2RH dR + R* dH) =

- %n (—2-10-30:0.1100-0.3) = — 105 =~—31.4 cm®,

Example 4. Compute 1.02*°" approximately.

Solution. We consider the function z==xY. The desired number ma
considered the increased value of this function when x=1, y=3, Ax= 302.
Ay=0.01. The initial value of the function z=13=1,

Az=~dz=yxY " Ax+x¥ Inx Ay=23.1-0.02-41+:1n1.0.01 =0.06.
Hence, 1.02%9 =~ 14 0.06=1.06.

1831. For the function f(x, y)=x"y find the total increment
and the total difierential at the point (1, 2); compare them if

a) Ax=1, Ay=2; b) Ax=0.1, Ay=10.2.

1832. Show that for the functions u and v of several (for
example, two) variables the ordinary rules of differentiation holds

a) d(u+v)=du+dv; b) d(uv)=udv+tvdu;
fu vdu—udv

Ul
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Find the total differentials of the following functions:

1833. z=x"+4"—3xy. 1841. z=Intan £,
1834. z=x"". x
o 1842. Find df (1, 1), if
1835. z2=5—>5. x
5, f(x, )=,
1836. z=sin"x-cos’y. Y
1838. z=1In (x* -+ y?). 1844, u =V x* + 4"+ 22
P x . ’ _'_I__ z
1839. f(x, y)=In (1 +;). 1845. u—-(xy+y).
1840, z=arctan E.-J[.. I1B46. u =arc tan%’ .
X
farctan . 1847. Find dJf (3, 4, 5)2 if
f xi ] 4 ="
[ (% Y, 2) e

1848. One side of a rectangle is a= 10 cm, the other b =24 cm,
How will a diagonal [ of the reclangle change if the side a is
increased by 4 mm and b is shortened by 1 mm? Approximate
the change and compare it with the exact value.

1849. A closed box with outer dimensions 10 em, 8 cm,
and 6 cm is made of 2-mm-thick plywood. Approximate the
volume of material used in making the box.

1850*. The central angle of a circular sector is 80° it is desired
to reduce it by 1°. By how much should the radius of the sector

be increased so that {he area will remain unchanged, if theorig-
inal leng:h of the radius is 20 cm?
1851. Approximate:

a) (1.02)" (0.97)*; b) V ({4.05) +(2.93)%;

¢) sin32°.cos59° (when converting degrees into radius and
calculaling sin60° take three significant figures; round off the
last digit).

1852. Show that the relative error of a product is approxima-
tely equal to the sum of the relative errors of the factors.

1853. Mecasurements of a triangle ABC yielded the following
data: side a=100m42m. side 6=200m43 m, angle
C=60°+1°. To whal degree of accuracy can we compute tha
side ¢?

1854. The oscillation period T of a pendulum is computed
from the forimula

.
T=2ﬂV —E'
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where | is the length of the pendulum and g is the acceleration
of gravily. Find the error, when delermining 7, obtained as a
result of small errors Al=a and Ag==pB in measuring [/ and g.

1855. The distance between the points P (x,, y,» and P (x, y)
is equal to g, while the angle formed by the vector P,P with
the x-axis is «. By how much will the angle a change if the
point P (P, is fixed) moves to P,(x-dx, y+dy)?

Sec. 5. Differentiation of Composite Functions

1°. The case of one independent variable, If z=f(x, y) is a differentiable
function of the arguments x and y, which in turn are differentiable functions
of an independent variable £,

x=q (), y="1y (1),

then the derivative of the composite function z=7f [@ (¢), VP (¢)] may be com-
puted from the formula

dz 0zdx  Ozdy
af “axdi Taydt (1)

In particular, if ¢ coincides with one of the arguments, for instance x,
then the “total” derivative of the function z with respect to x will be:

dz 0z 0Ozdy

d—_;:a}'l‘a?} I (2)
.. dz
Example 1. Find -, if
dt
2=e¥+2Y where x=cosf, y=1>.
Solution. From formula (1) we have:
2;,‘L:=.«.-'-'=+=J’-3(-—smz) e 9.9 =W (A1 —Bsint)=e o (4 —3sing),
Example 2. Find the partial derivative g—i and the total derivative gf 1)
X

s z2=¢*, where y=0q (x).
Solution. a—;=ye"3’.
From formula (2) we obtain

dz
Fers ye*y 4 xe*¥ @’ (x).

2°. The case of several independent variables. If z is a composite function of
several independent variables, for instance, z=f(x,y), where x=q (u,v),

y=%(u, v) (u and v are independent variables), then the partial derivatives z
with respect to u and v are expressed as

0z 020x  0zdy ,
ﬁ—aa—u-l-@a—‘i (3)
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— dz 0zdx  0z0
9f ooy PE0d
dv  0x0v +6y60 ' )
In all the cases considered the following formula holds:

0z dz
dz= 3 dx + 5 dy
(the invariance property of a total differential).

., 0z Z
Example 3. Find 3 and 30 * i
z=}(x, ), where x=uv, y=-—.

Solution. Applying formulas (3) and (4), we get:

0 . ‘ 1
= =f (. 9o+T, (09—

and
0z

S =Fx 9) u—f, (6 ) =
Example 4. Show that the function z=¢ (¥*4 y%) satisfies the equation
0z 0z
ya}—xa—y
Solution. The function ¢ depends on x and y via the intermediate argu-
ment x*+4y*=1, therefore,

or dzot_,
== =’ (44 2

=),

and

2 Bz yin
= ma Y ¥ +y*) 2y .
Substituting the partial derivatives into the left-hand side of the equa-
11311, weaget
§ 32— g =40 (P +4") 2—xg (2 +47) 2y =2y’ (V4 4Y)—2uy @' (+* +4) =0,
that is, the function z satisfies the given equation.
dz

1856. Find 5 if

z:—:-, where x=¢', y=Int.
du

1857. Find I if
u=1In sin—xﬁ, where x=3¢, y=V £+ 1.
1858. Find ¢ if

u=xyz, where x=¢"+1, y=Int¢, z=tanf.
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1859.

U=

1860.

1861.

1862,

1863.

1864,

1865.

1866.

then

1867.

1868.

; du .
Find =7 if

¥4
Vit
" dz .
Find > if
z=u®, where u=-sinx, v=cosux.

o0z dz .
Find at and = if

z=arc tan% and y=x".

0z dz
Tr and a5

z=x", where y= @ (x).

Find if

0z dz .
o and a—!} if

z={f(u, v), where u=x"—y"*, v=e",
0z

s dz
Find 5 and 3 if

Find

L d §
zzarctan?, where x=usinv, y=ucosv.

; 0z 0z
Find 5y and a—y if

z=[(u), where u=xy++!—i—.
Show that if
u=0(x*+y*+ 2", where x=R cos g cos P,
y=Rcosgsiny, z=R sing,
ou du
a—(P—O and a—q,_o.
; du .
Find T if
u=f(x, y, 2), where y=0¢(x), 2=9{x, 9.
Show that if
z=[(x+ay),

where f is a differentiable function, then

o _, 0z
dy = Ox'

, Where x=R cost, y=R sint, z=H.
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1869. Show that the function
w:f(ul U):
where u=x-+4af, v=y- bt satisfly the equation

Jw
1870. Show that the function

2=y (' —y)
satisfies the equation — ax+ : g;=i, .

1871. Show that the functlon
z=xy + X (%)

. g . 0z dz
satisfies the equation x5ty 0——y=xy+z.

1872. Show that the function
2= g (s

satisfies the equation (x*—y) g-ji—kxy%:xyz.

1873. The side of a rectangle x—20 m increases at the rate
of 5 m/sec, the other side y=30 m decreases at 4 m/sec. What
is the rate of change of the perimeler and the area of the rect-

angle?
1874. The equations of motion of a material point are

x=1t, y=1* z=1°

What is the rate of recession of this point from the coordinate
origin?

1875. Two boats slart out from A at one time, one moves
northwards, the other in a northeasterly direction. Their veloci-
ties are respectively 20 km/hr and 40 km/hr. At what rate does
the distance between them increase?

Sec. 6. Derivative in a Given Direction and the Gradient of a Function

1°, The derivative of a function in a given direction. The derivative of a
—
function 2=f(x, y) in a given direction {=PP, is

0 _ i [PO—F(P)
ol .P.P +0 PP

7- 1900
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where f(P) and f(P,) are values of the function at the points P and P,
If the function z is differentiable, then the following formula holds: )

dz 0z

dz
TR e cos o -I-@ sina, (1)

where a is the angle formed by the vector / with the x-axis (Fig. 67).

}"1 pf (I"yl}
ol
i CZ_ _
Plz,y

0 B

Fig. 67

In similar fashion we define the derivative in a given direction [ for a
function of three arguments u=/f(x, y, 2). In this case

du Odu du ou
3 = 55 08¢ —}-@cosﬁ -i—azcosy, @)
where o, B, y are the angles between the direction ! and the corresponding
coordinate axes. The directional derivative characterises the rate of change
of the function in the given direction.

Example 1. Find the derivative of the function 2=2x*—34* at the point
P (1, 0) in a direction that makes a 120° angle with the x-axis.

Solution. Find the partial derivatives of the given function and their

values at the point P:
0z dz
T (a;)p =)

0z dz
=~ (@)P =0

Here,

COS @& =CO0s 120°=~——;~ g

sin @ = sin 12O°=K2_§_ .
Applying formula (1), we get

The minus sign indicates that the function diminishes at the given point and
in the given direction.

2°. The gradient of a function. The gradient of a function 2=[(x, y) 15
& vector whose projections on the coordinate axes are the corresponding par-
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tial derivatives of the given function:
0z, 0z
gradz-——a-;i—f-a-gj. (3)

The derivative of the given function in the direction  is connected with
the gradient of the function by the following formula:

g—?: pro ji grad z.
That is, the derivative in a given direction is equal to the projection of the
gradient of the function on the direction of dilferentiation,

The gradient of a function at each point is directed along the normal to
the corresponding level line of the function. The direction of the gradient of
the function at a given point is the direction of the maximum rate of increase

of the function at this point, th#t is, when {=grad z the derivative%‘% takes

on its greatest value, equal to
d0z\*  [0z\*
V(&))"

In similar fashion we define the gradient of a function of three variables,
u—=f(x y, 2)

du ou du
grad ”=(T\;”‘Eyj+a_zk' 4)

The gradient of a function of three variables at each point is directed along
the normal to the level surface passing through this point.

Example 2. Find and construct the gradient of the function z=x% af
the point P (1, 1).

v i
2Fr-r——z
et
f e sy
p| {
— —
0 { 2 3 X

Fig. 68

Solution. Compute the partial derivatives and their values at the poinf P.

0z 0z
ax 2 (—)P—2.

ox Ox

dz (62)

== == X% =] =1,
dy dy /P

Hence, grad z=2{{J (Fig. 68).
7*
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1876, Find the derivative of the function z=x'—xy—2y"
at the point P(1, 2) in the direction that produces an angle
of 60° with the x-axis.

1877. Find the derivative of the function z=x*—2x%y 4+ xy* + 1
at the point M (1, 2) in the direction from this point to the
point N (4, 6).

1878. Find the derivative of the function z=In}/x*4* at
the point P (1, 1) in the direction of the bisector of the first
quadrantal angle.

1879. Find the derivative of the function u=x*—3yz+ 5 at
the point M(l, 2, —1) in the direction that forms identical
angles with all the coordinate axes.

1880. Find the derivative of the function u=xy- yz +2x at
the point M (2, 1, 3) in the direction from this point to the
point N (5, 5, 15).

1881. Find the derivative of the function u=In (e*+ & 4 ¢°)
at the origin in the direction which forms with the coordinate
axes x, y, 2 the angles u, B, vy, respectively.

1882. The point at which the derivative of a function in any
direction is zero is called the stationary point of this function.
Find the stationary points of the following functions:

a) z=x"+xy+y' —4x—2y;

b) z==x*+4y*—3xy;

c) u=2y"+ 2*—xy—yz +2x.

1883. Show that the derivative of the function z=y73 taken

at any point of the ellipse 2x*4-y*=C* along the normal to the
ellipse is equal to zero.
1884, Find grad z at the point (2, 1) if

z2=x4+y'— 3xy.
1885. Find grad z at the point (5, 3) if
2=V =
1886. Find grad u at the point (1, 2, 3), if u =xy2.

1887. Find the magnitude and direction of grad u at the
point (2, —2, 1) if

u=xt+4y*- 2*.

1888. Find the angle belween the gradients of the f[unction
z=In< at the points A(1/2, 1/4) and B(1, 1).
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1889. Find the steepest slope of the suriace
z2=x"+4y*
at the point (2, 1, 8).
1890. Construct a vector field of the gradient of the following
functions:
a) z=x+y: ¢ z:x’+y::

b) 2= xy, d) u=

VatrTe

Sec. 7. Higher-Order Derivatives and Differentials

1°, Higher-order partial derivatives. The second partial derivatives of a
function z=f(x, y) are the partial derivatives ol its first partial derivatives.
For second derivalives we use the notations

a/ z\ 0%z o _

a}(a)=é‘:t_z_fxx(x1 y)!

0 [0z 0%z w

5}(5}):6_1'6 =[x, ¥) and so forth,
Derivatives of order higher than second are similarly defined and denoted,
If the partial derivatives to be evaluated are continuous, then the resulf

of repeated differenttatlion is independent of the order in which the different:ia-

tion 1s performed.
Example 1. Find the second partial derivatives of the function

X
z= arc lan — ,
U}

Solution. First find the first partial derivatives:

oz |1 1y
5}“1_:; N s
6_?_;( i) -
ay xt \ 7 gt T
Y 1+ y
Now differentiate a second time:

ﬂmi(_z_)_ _ 0

oxt ~ ox\xt+4y?)  (xFFydr

%2 0 X 2xy

=5~ )~

ff__f?—( s )—1'(x’+y’)—2y-y_ x—y*

axay""ay x‘-[—y* - (.t’-}-y")’ —{x’+ yz): »

We note that the so-called “mixed” partial derivative may be found in a
different way, namely:

02 d*2 _a x \_ L4 y)—2x  XF—y
05 ~EER) " T G R
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2°, Higher-order differentials. The second differential of a function
z=f(x, y) is the differential of the differential (first-order) of this function:
d*z=d (dz)
We similarly define the differentials of a function z of order higher than
two, for instance:
d*z =d (d*z)
and, generally,
d"z=d (d""'z2).
If z=f(x, y), where x and y are independent variables, then the second
differential of the function z is computed from the formula
0%z 0%z 0%z
By~ 2 == 2
di2=— dx +26x6y dx dy +ay=dy. (h

Generally, the following symbolic formula holds true:
d a\"®
n, __ .
d z_(dxa——x—t-dy 6__:;) Z;

it is formally expanded by the binomial law,
If z=f(x, y), where the arguments x and y are functions of one or sev-
eral independent variables, then
0%z 0%z 0%z a2 0z
2 = T - 2 C 3. % 5 Y 3 2
d2z x,dr +Qa-——xayd).dy +ay,dy +6xdx+6ydy' (2)

If x and y are independent variables, then d*x=0, d?y=0, and formula (2)
becomes identical with formula (1).

Example 2. Find the total differentials of the first and second orders of
the function

2=2x"—3xy—y°.
Solution. First method. We have

0z
oy~ I
Therefore,

0z 0z
t?z"=(—?'—1r dx 4 7 dy = (4x—3y) dx—(3x + 2y) dy.

Further we have
0%z 0%z 0%z
d_x=”4' ey 5= -3, 6_y== —2,

whence it follows that
0%z 0%z 9%z
P iy, 07 | bl — dy? = - e
d3z axzdx +26xaydx dy—[—ay,dy =4dx*—6 dx dy—2 dy?.
Second method. Differentiating we find

dz=4x dx—3 (y dx 4 x dy)—2y dy = (4x—3y) dx— (3x 4 2y) dy.

Differentiating again and remembering that dx and dy are not dependent on
x and y, we get

d*z = (4dx— 3dy) dx— (3dx -+ 2dy) dy =4dx* —6dx dy—2dy*,
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. 0%z 0%z 2 .
18910 Flﬂd ;3?1 M' "a_‘!;'l II

oW EF L,
" 0%z 0%2 d*z .
1892. Find Tt m, '@2 if
z=In(x"+y).
1893. Find 2% if
' ax dy
2=V 2xy + 4"
. d*z .
1894. Find %oy if
S x4y
z=arc tan e

- o*r
1895. Find %, if

r=Vx+y +2%
1896. Find all second partial derivatives of the function
U=2xy-+yz+ zx.

1897. Find 5505 aJ 5 if
u=x"yz".
1898. Find a d 5 if
2 = sin (xy).
1899. Find [ (0, 0), f,,(0,0), [, (0, 0) if

fx, =147 +4y"

0%z %z .
1900. Show that 7 if
e x—y
Z == arc sin =
ﬁz 0%z .
1901. Show that = if
z2=x",

1902*, Show that for the function

2_
f(x: y)=xyi'i'+_i}:
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[provided that f(0, 0)=0] we have
f2, 0, O)=—1, .0, 0)=+1.
9z 9% 0%z
a2’ a'x_ﬁ"y’ Ey_’ if
z=f(u, v),

1903. Find

where u=x'"+y*, v=uxy.
1904. Find 2% if u=f(x, y, 2),
where z=¢ (x, g}z. P
1905. Find =5, 5% 0y 3 if
z={(u, v), where u=¢q(x, y), v="9(x, y).
1906. Show that the function

u =arc tan ¥

x
satisfies the Laplace equation
0u . u
'a?+a'y—='=0
1907. Show that the function
1

u=In—,
r

where r=V (x—a)* + (y—b)?, satisfies the Laplace equation
0%u  Pu
FP"‘E\?:O'
1908. Show that the function
u(x, t)=A sin (alf + @) sin Ax

salisfies the equation of oscillations of a string
*u 0%
0z — " ox?"
1909. Show that the function

_(x—x0)*+(y—ya)?*+(2—20)*
e qa3!

ulx, y, z, t)y=

(2a V ni)®
(where x,, y,, z,, a are constants) satisfies the equation of heat

conduction

ou (0% , d*u O
gi=a (a;?+a'y‘=+w)
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1910. Show that the function
u=g(x—at)+Y(x4-at),

where @ and ¢ are arbitrary twice differentiable functions, satis-
fies the equation of oscillations of a string

Ou _ a3
atr Bx’

1911. Show {hat the function
s=xp (%) +o (%)

0%z , 0%2
Varas ™Y o

1912. Show that the function
w=g () + V(L)

salisfies the equation

”3+2 =0,

satisfies the equation

1913. Show that the function z=/f[x 4 ¢ (y)] satisfies the equa-
fion
0 2 _ 3:0%
dxoxdy Oy dx®’
1914. Find u-=u(x, y) if
o0%u
Ox dy

1915. Delermine the form of the function u=u(x, y), which
salisfies the equation

=0,

d*u

E-Q:O.
1916. Find d’z if

z=¢",
1917. Find d’u if

U= Xyz.

1918. Find d*z if
=@ (f), where {=x*-}-y.

1919. Find dz and d®*z if

—u® wh = & —
z2=u" where u-—?,v—xy.
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1920. Find d%z if
z=f(u, v), where u=ax, v=>by,
1921, Find d*z if
z=f(u, v), where u=xe’, v=ye*,
1922. Find d’z if
z=¢e"cos y.
1923. Find the third difierential of the function
2=XxCOS Y-+ ysin x.
Delermine all third partial derivatives.
1924. Find df (1, 2) and d*f (1, 2) if
fFx, ) =x*+xy+y*—4Inx—10Iny.
1925. Find d*f (0, 0, 0) if

f(x, y, 2)=x"42y*+4- 32*—2xy + 4x2 | 2y42.

Sec. 8. Integration of Total Differentials

1°, The condition for a total differential. For an expression P (x, y)dx |-
+Q (x, y)dy, where the functions P (x, y) and Q (x, y) are continuous in a
simply connected region D toFether with their first partial derivatives, to be
(in D) the total differential of some function u(x, y), it is necessary and suf-
ficient that
9Q_.oF
dx Oy’
Example 1. Make sure that the expression
' (2x+g) dx -+ (x+24) dy
is a tolal differential of some function, and find that function.
Solution, In the given case, P=2x+-y, Q=x+4 2y. Therefore, ag__g—';
=1, and, hence,
du ou
(2¢+y) dx +(x+2) dy =du =T dv+ 3 dy,
where u is the desired function.

It is given that g-;:Qx—l-y; therefore,
={ @+ d=r+2+o).

But on the other hand g—:=x+<p’ () =x+ 2y, whence @' (y) =2y, ¢ (¢) =y*+C
and

u=x'+xy+y*+C.
Finally we have

(2x+y) dx+ (x+ 2y) dy =d (x*+ xy + y*+ C).
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2°, The case of three variables. Similarly, the expression
P(x, y, 2)dx+Q(x, y, 2)dy+R (x, y, 2)dz,

where P(x, ¥, 2), Q(x, y, 2), R(x, y, 2) are, together with their first partial
derivatives, continuous functions of the variables x, y and 2, is the total
differential of some function u(x, y, 2) if and only if the foilowmg conditions

are fulfilled:
6Q dP OR 60 oP OR

=0y 'Oy 0z "9z ox °

Example 2, Be sure that the expression
(3x24+3y—1)dx+ (22 - 3x) dy 4 (2yz 4 1) dz2

is the total differential of some function, and find that function.

Solution. Here, P=3x*+43y—1, Q=2*+43x, R==2yz-+1. We establish
the fact that

dQ_oP_, OR_4Q _, 9P _dR

ox _dy =3, dy ~ 0z =2z, dz __3._\'_“

and, hence,

; ou du ou
(3x? -3y —Vdx+ (22 +3x) dy + (2yz -+ 1) dz=du = adx{—d—y dy-}-a—édz,

where n is the sought-for function.
We have
ou

— 2 —
——a_3x 4-3y—1,
hence,

- S (32% 4+ 3y—1) dx=x*+3xy—x+ ¢ (4, 2).

On the other hand,

ou atp_ ’

3 3-’f+a?-—2 + 3x,
ou Op

7 P it L

99 a9

whence d—y:z’ and 32 =2yz-}+ 1. The problem reduces fo finding the function
of two variables @ (y, 2) whose partial derivatives are known and the condi-
tion for total differential is fulfilled.
We find o:
o =\ 2y=y2 +v (@),
6:1 2yz 4+ (2) =242+ 1,
VY ()=1, $(2)=z+C,
that is, @ (y, ©)=y2z*+2+C. And finally,

u=x*+3xy—x+yz*+z-4C,
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Having convinced yourself that the expressions given below
are total differentials of certain functions, find these functions.

1926. ydx -+ xdy.

1927. (cos x4+ 3x"y) dx+ (2’ —y*) dy.
(x+2y)dx+-y dy

1928. TP .
x+2y , 2x—y

1929. mdl—m dy

1 X

X Y
. —=dx-}+ — dy.
Voats  Veig !
1932. Determine the constants ¢ and b in such @ manner that
the expression

1931

(ax® + 2xy 4 y*) dx—(x* 4 2xy + by®) dy
(xl __l_ y!)!

should be a total differential of some function z, and find that
function.
Convince yourself that the expressions given below are tolal
differentials of some functions and find these functions.
1933. 2x+-y+2)dx+ (x+2y+2)dy+(x-+ y - 22) dz.
1934. (3x" +2y* + 32) dx+ (dxy + 2y —2) dy + (3x —y —2) dz.
1935. (2xyz—3y'z 4 8xy* 4 2)dx -
+ (x*z2—6xyz + 8x'y 4 1) dy +- (x*y—3xy* -+ 3) d2.
1 z | X 1 y
1936. (T‘F) dx F(-z——?)der(—x——zT)dz.
1937. xdx+ydy+zdz
Vatyte
1938*. Given the projections of a force on the coordinate axes
- e
=t V=G

where A is a constant. What must the coefficient A be for the force
to have a potential?

1939. What condition must the function [(x, y) satisiy for the
expression
f(x, y) (dx+dy)

to be a total differential?
1940. Find the function u if

du = [ (xy) (y dx + x dy).
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Sec. 9. Differentiation of Implicit Functions

1°, The case of one independent variable. If the equation f(x, ¥)=0, where
| (x, y) is a differentiable funclion of the variables x and y, defines y as a
function of x, then the derivative of this implicitly defined function, provided

that f; (x, ¥) # 0, may be found from the formula

dy  [eto9)

== : 1)
a ' (
£y
Higher-order derivatives are found by successive differentiation of formula
(1)
dy d’y .
Example 1. Find dx and P if

(*+ 47 —3 (¥ +y*) +1=0.

Solution. Denoting the left-hand side of this equation by f(x, y), we find
the partial derivatives

Fol®, y) =3 (x4 4?2 2x— 3. 2x==6x [(x* + ¢*)* — 1],
F, (%, 9) =3 (¥ y*)?- 2y — 8.2y =6y [(x*+y*)*—1].
Whence, applymg formula (1), we get

dy_ e 9)  exqeedyr—11_
de — fle, ) IR0y

To find the second derivative, differentiate with respect to x the first deriva-
tive which we have found, taking into consideration the fact that y is a func-
tion of x°

ly—x Y L ‘(( t)
dy_d( x\__TTax_ TT\NTY) g4
de?  dx y ) y* o e - yro

2°, The case of several independent variables. Similarly, if the equation
F(x, y, 2)==0, where F(x, y, 2) is a differentiable function of the variables
x, y and 2z, defines z as a function of the independent variables x and y and

!z (x, ¥, 2) # 0, then the partial derivatives of this implicitly represented

function can, generally speaking, be found from the formulas
62__ F‘;(}C, i, Z) az_ F_:‘,{x, i, 2)
d¢  Fi(x,y,2) %  F,(x,y, 2

Here is another way of finding the derivatives of the function z: differenti-
ating the equation F(x, y, 2)=0, we find

@

or oF oF
a-;dx+d—ydy+&-d220.
Whence it is possible to determine dz, and, therefore,
g2 0z
and = .

0x oy
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0z dz
Example 2, Find Ep and 5 if

X2yt 4322 —y2 4y =0.

Solution. First method. Denoting the left side of this equation by F (x, y, 2),
we find the partial derivatives

Felx, y, 2)=2x, F (x, y, )=—dy—2+1, F,(x, y, 2)=6z2—y.
Applying formulas (2), we get
oz Fxnu.2) o 9 F % 0,2 | —dy—z

% TRy &0 W F(qpa Y

Second method. Differentiating the given equation, we obtain
2xdx—4ydy+62dz—ydz—zdy-+duy=0.

Whence we determine dz, that is, the total differential of the implicit func-
tion:
_2xdx+4-(1—4y—2)dy

dz =t

Comparing with the formula dz=g§dx—|—g§dy, we see that

— T —— ]

3°, A system of implicit functions. If a system of two equations

{ F(x, y, u, v)=0,
G(x, y, u, v)=0

defines 4 and v as functions of the variables x and y and the Jacobian

OF oF
D(F, G) |oduov
D, o)~ |969G| "
Ou dv
then the differentials of these functions (and hence their partial derivatives
as well) may be found from the following set of equations

oF oF oF oF
aG G dG aG
a dx-l-gg dy-'—-a'—-u dﬂ+a;dﬂ—-—-0.

Example 3. The equations
ut+v=x+y, xutyv=1

ou Odu do q du

define 4 and v as functions of x and y; find 3’ 3y ' ox 0 %
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Solution. First method. Differentiating both equations with respeet to x,
we obtain

a+a=h
du
W 6x+ 6
whence

ﬂ_u _uty Ov_udx
dx x—y'ox x—y°

Similarly we find
43_u u+y dv_uv+x
dy ~  x—y' oy x—y’

Second method. By differentiation we find {wo equations that connect the
differentials of all four variables:

du-+dv=dx+dy,

xdu +udx+ydv+vdy=l.
Solving this system for the diufferentials du and dv, we obtain
dye (Bt ax vt yyay -, (Fx)dx (0 +x)dy
= x_y ) x-“y L ]

Whence
du__ _uty du_ vty
ox tﬂ-.; "dy  x—y
du _utx du v-x

ox x—y' 0y x—y'

4°, Parametric representation of a function. If a function 2 of the varia-
bles x and y is represented parametrically by the equations

x=xu, v), y=yu, v), 2=2z(u, v)
and
dx Ox
D(x, y) [dudv
D v) |99y
du dv

# 0,

then the differential of this function may be found from the following system
of equations

dx-—g-x—du—l-gjdu.
dy
y=g, 4 ‘l’a 4% )
dz

dz aud: - —dv

Knowing the differential de=p dx-+q¢dy, we find the partial derivatives
dz 0z
=P and 33_—:;.
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Example 4. The function z of the arguments x and y is defined by the
equations
x=u+v, y=ul+4v: z=ul4uv? (us#v).

: 0z 0z
Find P and R

Solution, First method. By differentiation we find three equations that
connect the differentials of all five variables:

dx=du+dv,
{ dy =2u du-+2vdv,
dz =3utdu+ 3vidv.
From the first two equations we determine du and du:
du = 2v dx—dy dy—2u dx

~F— " Yo"

gubstituti'ng info the third equation the values of du and dv just found, we
ave:

2v dx—dy dy—2u dx
= 2 iecculeir-""0v e 1 2 g =
d2=3 S—w) T 20—
_buv (u—v)de+3 (v*—u?)dy 3
= 50 —u) = —3uv dx —|-—Q- (4 -+ v)dy.
Whence

0z dz 3
a}-—- —3”!1, "a—y-—-—é— (u—l—v}.

Second method. From the third given equation we can find
0z dv 0z

ou du
— 2 —— 2 — — —_—
ox W axt 9 dx" dy dy *

Differentiate the first two equations first with respect to x and then with
respect to y:

= 3u® g—;+302 (5)

du  dv ou , du
du du du ov
0—2!!§i+2£’3}', 1_2!183—{—20 "a?}.
From the first system we find
du v du 7

ox v—u’' O u—v"
From the second system we find
du 1 du__ 1

0y 2(u—v)’ 9y 2(v—a)"
Substituting the expressions ?-E and (-?i into formula (5), we obtain

ox dy
0z 3,0

oz v 2 W
ox v—u+3u Uu—v ou,
0z U | 1

3
@=3u m"‘svz'%—_—u):—z— (u-l—U).
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1941. Let y be a function of x defined by the equation

2y
=Te=1

. dy d*y d*y
Fmda, T3 and Tes

1942, y is a function defined by the equation
X+ytt-2axy=0 (a>1).

Show 1hat —~0 and explain the result obtained.
1943. Fmd :}% if y=1-4y~.
dy

* diy .
1944. Find p and d—*,’,’ if y=x+4-1ny.
d*y

1945. Find (g)m and (dx=)x=. if
x*—2xy-y*+x+y—2=0.

Taking advantage of the results obtained, show approximately
the portions of the given curve in the neighbourhood of the point

x=1,
1946. The function y is defined by the equation

InVx*4-y*=a arcian%(asé()).
Find d—i’f and d—y
1947. Find & and 24 if
I 4-xy—In (e -}-e ) =0.

1948. The function 2 of the variables x and y is defined by
the equation
X2+ 2 —3xyz—-2y + 3 =0.

Find ?—Z and
ox
1949. Fmd and— if
xcosy-lycosz+zcosx=1.
1950. The function z is defined by the equation
X4 yt—2t—xy=0.

Fmd and 3 {or the system of values x=—1, y=0, 2=1.
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" dz 0z 0% 0%z 0% .
1951. Fi da;, (T‘l:(’ m,m,a@i f

2 2 2
St et =1

1952. f(x, y, 2)=0. Show that gxgygz —1.

1953. z=¢(x, y), where y is a function of x defined by the
equation Y (x, y)=0. Find g-;

1954. Find dz and d*z, if

x2+yl+z!=all

1955. z is a function of the variables x and y defined by the

equation
2x* 4+ 2y + 2 —8xz2—2+48=0.

Find dz and d*z for the values x=2, y=0, z2=1.

1956. Find dz and d’z, if In z=x+4y +2—1. What are the

first- and second-order derivatives of the funclion 2?
1957. Let the function z be defined by the equation

x*Ly 42" =g (ax+ by +c2),

where ¢ is an arbitrary differentiable function and a, b, ¢ are
constants. Show that

0z gz
(cy—bz) =T (az—cx) == bx—ay.
1958. Show that the function z defined by the equation
F(x—az, y—b2)=0,

where F is an arbitrary differentiable funclion of two arguments,
satisfies the equation

0z 0z
dntbg=
x  y\ 0z 0z
1959. F(? it *;)—0 Show that JCa;-l*yf“’—y-’—Z

1960. Show that the function 2z defined by the equation
y=x¢ (2) +P(2) satisfies the equation

9%z (02 0z 0z d*z 0z
Jﬁ(a‘g) —2 5y 6x6‘y+ay (ax) =0.
1961. The functions y and z of the independent variable x are
defined by a system of equations x* +y*—2z" =0, x*+ 2¢* + 32 =4,

dy dz d*y d*z _ .
Fmddx, =y T T3 for X=1, y=0, 2=1.
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1962. The functions y and z of the independent variable x are
defined by the following system of equations:

xyz=a, x+y+z=~=b.
Find dy, dz, d’y, d’z.
1963. The funclions u and v of the independent variables x and y
are defined implicitly by the system of equations

u=x-+y, uv=y.
Calculate

Ox' dy’ Ox*' Oxoy' oy’ ox’ dy' o\’ Oxoy’ 04
for x=0, y=1.

1964. The functions « and v of the independent variables x
and y are defined implicitly by the system of equations

utv=x, u—yv=_0.

Find du, dv, d*u, d’v.
1965. The functions u# and v of the variables x and y are
defined implicitly by the system of equations

x=9¢(u,v), y=1yp(u,v).
o 6u odu Jv dv
Find e ! '@} ' e’ @.

1966, a) Find g_i and g—;, if x=ucosv, y=usinv, z=cv.
i dz dz .

b) Find 5 and 3 ifx=u+4v, y=u—v, z2==uv.

¢) Find dz, il x=¢€"*?, y=¢€""" z=uv.

1967. 2= F (r, ¢) where r and ¢ are functions of the variables
x and y defined by the system of equations
X=rcose¢, y=r sing.
. 402 0z
Find 5 and 3"
1968. Regarding z as a function of x and g, find g% and %, if
x=acosgcosy, y=~=b singcosyP, z=csiny.

Sec. 10. Change of Variables

When changing variables in differential expressions, the derivatives in
them should be expressed in terms of other derivatives by the rules of differ-
entiation of a ccmposite function.
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1°. Change of variables in expressions containing ordinary derivatives.
Example 1. Transiorm the equation

dy

dx’+ +x‘y=0

putting x:ti
Solution. Express the derivatives of y with respect to x in terms of the

derivatives of y with respect to f. We have

dg dy
dy_at __dt__ _.dy
dx dx 1 dt’
di {2
i ()
d’y _d (dy di \ dx . § . . .4
-4 d_x)_ - ( +05E ) (== W0l
di

Substituting the cxpressions of the derivatives just found into the given
ejuation and replacing x by —:- , we get

l » dY 2i0
s ( -Itdt,)—}—?—(—tm)—{—aty—ﬂ

d*y
dz! ey =1,

or

Example 2. Transform the equation

d’ ( dy
ot dx) s

taking y for the argument and x for the function.
Solution. Express the derivatives of y with respect to x in terins of the
derivatives of x with respect to y.

“l%
& R{ -

s 23

dy_d s 1 d 1 \ dy dg®* 1 dy
dxz“‘dx(d_x> <dx>dx (gic)= de (d_x)a
dy dy dy) dy dy
Substituting these expressions of the derivatives into the given equation, we

will have
i‘fi’
2
al dy " 1 _L=0’

@) (&) &
L \d (dy dy
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or, finally,

d*x dx\?
= 1+(5)

Example 3. Transfornm the equation

dy x+y
dx x—y'

by passing to the polar coordinates
X=rcos g, y=rsinqQ. ()
Solution. Considering r as a function of ¢, from formula (1) we have

dx=cos@dr—rsin@de, dy-=singdr+4-rcosqdyp,

whence
sin ﬁ rcos
dy sing@dr+-rcosqgdy (pdl]'! oS
dx cos Qdr—rsinQdp cos -@-——r sty
dp
Putiting into the given equation the expressions for x, y, and g—i, we will have
i E - ¢Os
smqjdqf{ oSy __reos@--rsing
cos ;%_r shti @ rcos @—rsin@
or, after simplifications,
e
dp

2°> Change of variables in expressions containing partial derivatives.
Example 4. Take the equation of oscillations of a string

g? o*
Sp=a 35 (@#0)

and change it to the new independent variables @ and B, where a=xy—at,
p==x+-at.

Solution. Let us express the partial derivatives of u with respect to x and ¢
in terms of the partial derivatives of u with respect to @ and B. Applying
the formulas for differentiating a composite function

du_Ouda  Ouop OGu_ duda  dudp

—

9% —daof Top ot Ox dudx ' 3P Ax’

we get
Ju Odu du  f(du Odu
aT:g{—:-(—“a)'{—a—ﬂﬂ—ﬂ(a—ﬁ—-%).
du Ou ou

du  du
% ae TR Taa T
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Differentiate again using the same formulas:

:?%:?%(%;) ﬁa(?a:)dﬁaﬁ(at)ge
2 2 E 2
(252 ore(d2-25)e-
. a=u .
“( > 30 0p 613’)'
o du @
g_r( ) d(l(dx)dx-I—@[S(u)dE
Fu 9
(62:+du6ﬁ)l (dudp_l-dﬁu)
g;=+ 2 afgﬁ*'g;:

Substituting into the given equation, we will have

(U . Fu . Pu Fu oy
“(5&? aaag+aﬁ=) (au'+26aaﬂ+aﬁ=)

l

or \
d*u
6aaﬁ_0'
Example 5. Transforin the equation .:r3 +y —-=z’ taking u—=x, v =

0y
ré-——-}r- for the new independent varlables, and w:%_t}r_ for the new

function.

Solution. Let us express the partial derivatives 3—; and %in terins of the
ow

partial derivatives %—% and 30 To do this, differentiate the given relation-
ships between the old and new variables:

dx _dy dx dz
du=dx, dv= P L d =gz
On the other hand,
dw

dw
dw-—a‘—du+%d0
Therefore, " 5 4
w w x dz
—aEle+'r}—UdU=?—?
o 6 d d d
w x_dy\ dx dz
d +au (x’ y‘)_ *

Whence

and, consequently,
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and
dz 2 dw

T — —

dy y*dv’

Substituting these expressions into the given equation, we get
PRy NS AT

(lw_
du

or
=0,

1969. Transform the equation

dx.+2x +y=0,

putting x=e¢'.
1970. Transform the equation

(1—x) e —x L =0,

g

putting x=cost.

/!

r

?
7 T

IFag 69

X

1971 Transform the following equations, taking y as the ar-
gument-

2) 74 +w():0

dyd Yy d*y
b) dxF_B (dx’) =0.
1972. The tangent of the angle p formed by the tangent line
MT and the radius vector OM of the point of tangency (Fig. 69)
is expressed as follows:

)
¥ "%

tan p== — &
I+ 2y
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Transform this expression by passing to polar coordinates:
X=rcosqQ, y=rsine.

1973. Express, in the polar coordinates x=rcos¢@, y=rsing,
the formula of the curvature of the curve

—
K=tFurrs-
1974. Transform the following equation to new independent
variables u and u: ; ;
£4 4
Yy a——x -@=0,
it u=x, v=x'+y".
1975. Transform the following equation to new independent
variables u and v: R
0z 2
xa}—]—ya_y_zzoi

if w=x, =2,
X

1976. Transform the Laplace equation
0*u |, dtu
dx_a_l_.-a?zo

to the polar coordinates
X=rcosg, y=rsing,
1977. Transform the equation
s 0% 02
* =Y g =0,
putting u=xy and v=%.
1978. Transform the equation
oz 0z
Ya—rig=W—x2,
by introducing new independent variables
2 2 1 1
=8P V=g
and the new function w=Inz—(x4y).
1979. Transform the equation
0%z 0% 0%z
o 2aroy T o=
taking u=x+y, v==< for the new independent variables and
w== for the new function.
X
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1980. Transform the equation

0%z 9%z | 0%
e+ 2oyt =0

putting u=x+y, v=x—y, w=xy—z, where w=w(u, v).

Sec. 11. The Tangent Plane and the Normal to a Surface

17. The equations of a tangent plane and a normal for the case of explic-
it representation of a surface. The fangent plane to a surface at a point M
(point of tangency) is a plane in which lie all the tangents at the point M to
various curves drawn on the surface through this point.

The normal to the surface is the perpendicular to the tangent plane at the
point of tangency

If the equation of a surface, in a rectangular coordinate system, 1s given
in explicit form, z={(x, y), where f(x, y) is a diflerentiable function, then
the equation of the tangent plane at the point M (x,, y, 2} of the surface is

Z—2y==fy (Xor Yo) (X—2g) -+ F, (%0, 40) (¥ —yo). (1)

Here, zo=f (x,, yo) and X, ¥, Z are the current coordinates of the point of
the tangent plane.
The equations of the normal are of the form

X—x, _ Y—y, Z—2,
f: (%9, Y0) f:,: (%05 Ho) —17

where X, Y, Z are the current coordinates of the point of the normal.
Example 1. Write the equations of the tangent plane and the normal to
2

the surface z'=3§-—y2 at the point M (2, —1,1).

Solution. Let us tind the partial derivatives of the given function and
their values at the point M

az-—x 6_2) =2
ox ox/m

0z 0z
— == 9 —_— =]
cy = (6‘y )M .

Whence, applying formulas (1) and (2), we will have z—1=2{x—2)42(y 4- 1)

or 2x-]-2y—2z—1==0 which is the equation of the tangent plane and Y

2

y+1_z2—1
2 T -1
2°, Equations of the tangent plane and the normal for the case of implic-

it representation of a surface. When the equation of a surface is represented
implicitly,

which is the equation of the normal.

—
—_—

F(x, y, 2)=0,
and F (xy, Yo 20)=0, the corresponding equations will have the forin

F;: (£01 Yor %) (X—-.t‘n)—{—F; (X0) Yor 20) (Y — 1) +F; (Xar Yo 2 (Z—=24) =0 (3)
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which is the equation of the tangent plane, and
X'—'xn — Y—yn _ Z—Zn
F; (%0s Yor 20) F; (X0) Yor 24) F; (X0, Yor 2o)

(4)

which are the equations of the normal.

Example 2. Write the equations of the tangent plane and the normal to
the surface 3xyz—z2*=a® at a point for which x=0, y=a.

Solutlon. Find the z-coordinate of the point of tangency, putting x=0,
y=a into the equation of the surface: —2z*=a®, whence z= —a. Thus, the
point of tangency is M (0, a, —a). _ .

Denoting by F{x,dy, ) the left-hand side of the equation, we find the
partial derivatives and their values at the point M:

F;=3yz, (F;)M= —3a?,
F_;,=3xz. (F__;)M=0,
F,=3%y—32 (F)m= —3d".
Applying formulas (3) and (4), we get
—3a* (x—0)+ 0 (y—a)—3a® (2 +a) =0
or x4-z4a==0, which is the equation of the tangent plane,

x—0 y—a_ z+4a
—3a2~ 0 — —3a?

=

—a_z4-a
h-—l—l——‘

oF 2
FT70

, which are the equations of the normal.

1981, Write the equation of the tangent plane and the equa-
tions of the normal to the following surfaces at the indicated
points:

a) to -the paraboloid of revolution z=x*+4y* at the point

z!

b) to the cone %+%————8-=-0 at the point (4, 3, 4);

c) to the sphere x*+4y'+42°=2Rz at the point (R cosa,
Rsina, R),
1982. At what point of the ellipsoid

x! u! z!
atEta=l
does the normal to it form equal angles with the coordinate axes?
1983. Planes perpendicular to the x- and y-axes are drawn
through the point M (3, 4, 12) of the sphere x4 y* 4 2* = 169.
Write the equation of the plane passing through the tangents to
the obtained sections at their common point M,

1984. Show that the equation of the tangent plane to the
central surface (of order two)

ax* + by’ +cz* =k
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at the point M (x,, y,, z,) has the form
ax x+byy +czz=~k.

1985. Draw to the surface x’—|—2y’ 4-32* =21 tangent planes
parallel to the plane x4y J[-ﬁz_.

1986. Draw to the ellipsoid —-»}- —[——-—*1 a tangent plane

which cuts off equal segments on the coordmate axes.

1987. On the surface x*-+y* —2z' — 2x-=0 find points at which
the tangent planes are parallel to the coordinate planes.

1988. Prove that the tangent planes to the surface xyz=m’
form a tetrahedron of constant volume with the planes of the
coordinates.

1989. Show that the tangent planes o the surface Vx+Vy+
4 Vz=Va cut off, on the coordinate axes, segments whose sumn
is constant.

1990. Show that the cone -1 £

i b,—%: and the sphere

Xty —I+(zh—b21—c ) =-i—:(b' +4-c*)

are tangent at the points (0, 4 b, ¢).

1991. The angle between the tangent planes drawn to given
surfaces at a point under consideration is called the angle between
two surfaces at the point of their intersection.

At what angie does the cylinder x*+¢y*=R?* and the sphere

(x—R)* -y +2°==R* intersect al the point M(R 8 !/3 0)D

1992. Surfaees are called orthogonal if they mtersect at right
angles at each point of the line of their intersection.

Show that the surfaces x*+y*+2'=r" (sphere), y=xtlang
(plane), and 2* = (x*+ y*)tan* ¢ (cone), which are the coordinate
surfaces of the spherical coordinates r, ¢, ¢, are mutually ortho-
gonal.

1993. Show that all the planes tangent {o the conical surface
Z == xf(%) at the point M (x,, y,, 2,), where x, :#0, pass through
the coordinate origin.
1994*. Find the projections of the ellipsoid
X+yt+t—xy—1=0

on the coordinate planes.
1995. Prove that {he normal at any point of the surface of

revolution z=f(V/ '+ 4*) (f' + 0) intersecl the axis of rotation.
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Sec. 12. Taylor’s Formula for a Function of Several Variables

Let a function f(x, y) have continuous partial derivatives of all orders
up to the (n+ 1) th inclusive in the neighbourhood of a point (@, §). Then
Taylor’s formula will hold in the neighbourhood under consideration:

Fr, =1 (@, 0)+; [ (@ ) —a)+ ) (e, b) G—b)] +
+§57 [Fex (@, B) (x—a)* +2F, (a, b) (x—a) (9—b) +,,, (a, b) (y—b)*}4- ...
ot [e—agru—n g] 1@ bR

where

Ro(x, 9)= [e—agtu—tz]"" Hatw—a). br0w—b)

1
Nt
e 0<B<l).

In other notation, I 1
Flet b, g+ R=](x, g) 5 hFy (o 9)HRE, (0 9+ 5 (R0, (x, 0)

L onkf, (2, )4 2 (r )]+ .. 4 h5+k3]"fn y) -t
xy (50 Y vy 50 Y BN AR
] n+1 )
—I—m [h 5'1 -}-k@] f(\ -—I- Ufl, i -E—Ok}, (.2)

or
1
Af (x, H)=—]—} daf (x, yl+—21—ld=f(x, Y- ...

1 1
et di 9+

(n+1)!

The particular case of formula (1), when a=b=0, is called Maclaurin's
formula.

Similar formulas hold for functions of three and a larger number of
variables.

Example. Find the increment obtained by the function f(x, y)==213—
—2y;+3xy when passing from the values x=1, y=2 to the values x,-= [ -}- &,
yr=2+Rk.

Solution, The desired increment may be found by applying formula (2).
First calculate the successive partial derivatives and their values al the
given point (I, 2):

d™ VU (x -k Ol g Ok) (3)

fx (% §)=3x"4 3y, f. (1, 2)=3.143.2=9,
fy %, 9)=—6y2+3x, [ (1, 2)=—6.4-8.1=~21,
Fou U5 =162, fi (1, 2)=6.1=86,
Fry (% ) =3, F(ls 2=3,
Foy 0 9)=—12y, [, 2)=—12.2= —24,
Fres (50 ) =8, Freels 2)=6,
Fray (5 9)=0, Fr(l, 2=0,
Fyy (55 9)=0, Fryy(1, 22=0,
fyyy O Y)=—12, frotls 2)=~12.
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All subsequent derivatives are identically zero. Putting these results
into formula (2), we obtain:

A (0= F (1, 24 &) —F (1, )=, [A-9+k(—21)] +

gy 6 - 20k-3 4 R (— 28] - - (46 4 3K -0 3k*-0 4 & (— 12)] =
o= Oh— 21k - 3h*+ 3hk — 12k% + h®— 243,

1996. Expand f(x+ A, y+ k) in a series ol positive integral
powers of A and k& i

f(x, y)=ax® | 2bxy +cy’.

1997. Expand the function [(x, y)=—x"+ 2xy+ 3y*—6x —
— 2y —4 by Taylor’s formula in the neighbourhood of the point
(— 2, 1).

1998. Find the increment received by the function f(x, y)=
= x*yy when passing from the values x=1, y=1 to

x,=14h, y =1--k.

1999. Expand the function f(x, y, 2)=x"-+y"'+ 2" + 2xy—pyz —
—4x —3y—2z--4 by Taylor’'s formula in the neighbourhood of
the point (1, 1, 1).

2000. Expand f(x : h, y-+ kR, 2- 1) in a series of positive in-
tegral powers of h, &, and [, if

f(x, 4, 2)—=x" i y* {2 —2xy—2x2—2yz.

2001. Expand the following function in a Maclaurin’s series
up to terms of the third order inclusive:

f(x, y)=r¢"siny.

2002. Expand the following function in a Maclaurin’s serjes
up to terms of order four inclusive:

f(x, y) =cos x cos y.

2003. Expand the following function in a Taylor’s series in
the neighbourhood of the point (1, 1) up to terms of order two
inclusive:

[(x, y)=y*~.
2004. Expand the following function in a Taylor’s series in

the neighbourhood of the point (1,—1) up to terms of order
three inclusive:

f(x! ) =g” Y,
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2005. Derive approximate formulas (accurate to second-order
terms in a and P) for the expressions

a) arctan :—-:!_——_%; b) "/“-}—a)m;_(l_*_m",

if |a| and || are small compared with unity.
2006*, Using Taylor's formulas up to second-order terms,
approximate

a) Y'1.03; 7/ 0.98; b) (0.95)2-01,

2007. z is an implicit function of x and y defined by the
equation 2*—2xz+y =0, which takes on the value z=1 for x=1
and y=1. Write several terms of the expansion of the [unction
z in increasing powers of the differences x—-1 and y—1.

Sec. 13. The Extremum of a Function of Several Variables

1°. Definition of an extremum of a function. We say that a function
flx, y) has a maximum (mintmum) f(a, b) at the point P (a, b), f for all
points P’ (x, y) different from P in a sufficiently small neighbourhood of P
the inequality f(a, &) > f(x, y) [or, accordingly, f(a, b) < [ (x, )] is fulfilled.
The generic term for maximum and minimum of a function is extremum.
In similar fashion we define the exiremum of a f[unction of three or more
variables.

2°, Necessary conditions for an extremum, The points at which a diffe-
rentiable function f(x, y) may attain an extremum (so-called stationary points)
are found by solving the following system of equations:

fe(x, 9)=0, [, (x,4) -0 (1)

(necessary conditions for an extremum). System (1) is equivalent to a single
equation, df(x, y)=0. In the general case, at the point of the extremum
P (a, b), the function f(x, y), or df (a, b)=0, or df (a, b) does not exist.

3°. Sufficient conditions for an extremum. Let P (a, b) be a stationary
point of the function f}x. y), that is, df(a, b)=0. Then: a) if d*f(a, b) <D
for dx®-}-dy* > 0, then [(a, &) is the maximum of the [unction f(x, y); b) if
d*f (a, b) > O for dx?*+4-dy* > 0, then f(a, b) is the mintmum of the function
[ (x, y); c) if d*f (a, b) changes sign, then f(a, b) 1s not an extremum of f (x, y).

The foregoing conditions are equivalent to the following: let f; (a, b):-=

=f; (e, b)=10 and A=f:x (a, b), B== f:y (a, b), C:;';y (@, b). We form the
discriminant

A= AC— B

Then: 1} if A >0, then the function has an extremum at the point
P (a, b), namely a maximum, if A <0 (or C < 0), and a minimum, 1f A >0
(or C>0); 2) ‘ﬂ A <0, then there is no extremum at P(a, b); 3) if A:==0,
then the question of an extremum of the function at P(a, b) remains open
(which is to say, it requires further investigation).

4°. The case of a function of many variables. For a function of three or
more variables, the necessary conditions for the existence of an extremum



Sec. 13) The Extremum of a Function of Several Variables 223

are similar to conditions (1), while the sufficient conditions are analogous to
the conditions a), b), and c) 3°
Example 1. Test the following function for an extremum:

z=x%-} Bxy*— 15x— 12y.
Solution. Find the partial derivatives and form a system of equations (1):

02 a ; _p, OF_ 5.

or

x4 y*—5=0,
xy—2=0.

Solving the system we get four stationary points:
P,(1,2)y P,(2, 1)y Py(—=1,=2); Py(—2,—1).
Let us find the second derivatives
0%z 0%z 0z
5}",—61, a—-—xay—ﬁy. 3?_

and form the discriminant A= AC— B*® for each stationary point.
1) For the pomnt P,: A='9?) =6, B= _‘3?_) =12 C=(‘?iz -
i ¥ (dx’ p, dxdy / p, ' ay? e,
=6, A=AC—B*=36—144 < 0. Thus, therc is no extremum at the point P,.
2) For the point P,: A=12 B=6,C=12; A=144—36>0, A >0 At P,
the function has a minimum. This minimum s equal to the value of the
function for 1--2, y=: 1"

Zamin 8 46— 30— 12== — 28,

3) For the point Py: A=z —6, B=—12, C==—6;, A=36—144 < 0. There
ts 110 extremum.

4) For the point P A= —12, B=—6,C=—12; A=144—-36>0, A <V,
At the %oini P, the function has a maximum equal to zp,x=—8—6+4 30+
4-12-=2

5°. Conditional extremum. In the simplest case, the conditional extremum
of a function f(x, ») 1s a8 maximum or minimum of this function which 1s
attained on the condition that its arguments are related by the equation
ip(x, ) =0 (coupling equation). To find the conditional extremum of a fume-
}ion (x, ¥), given the relationship ¢ (x, ¥)=0 we forin the so-called Lagrauge
unction

6x

Fix, ) =T(x, 9) -+ A (x, 1),

where A is an undetermimed multiplier, and we seek the ordinary extremum
of this auxiliary function. The necessary conditions for the extremum reduce
to a system of three equations:

OF _of ., 0p
o o TR =0
oF _df ,, 09 _ @)
eyt a0
rp(x. y)h:o

with three unknowns x, y, A, f[rom which it is, generally speaking, possible
to determine these unknowns,
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The question of the existence and character of a conditional extremum is
solved on the basis of a study of the sign of the second differential of the
Lagrange function:

a'F a@*F atF
H — e dxt i ——dy?
d*F (x, v) T dx +2axayd"‘dy+ayz dy

for the given system of values of x, y, A obtained from (2) or the condition
that dx and dy are related by the equation

‘_32 oy . 2 4 42
By dx—}—ggdy-—(} (dx® - dy? # 0).

Namely, the function f(x, y) has a conditional maximum, if d’F <0, and a
conditional minimum, if d*F > 0. As a particular case, if the discriminant A
of the function F(x, y) at a stationary point is positive, then at this point
there is a conditional maximum of the function f(x, y), if A< 0 (or C < 0),
and a conditional minimum, if A >0 {(or C > 0)

In similar fashion we find the conditional extremum of a function ol
three or more variables provided there is one or several coupling equations
(the number of which, however, niust be less than the number of the variables)
Here, we have to introduce into the Lagrange function as many undeternuned
multipliers factors as there are coupling equations.

Example 2. Find the extremum of the function

z2=6—4x—3y
provided the variables x and y satisiy the equation
x24-y*=1
Solution. Geometrically, the problem reduces o finding the greatest and
least values of the z-coordinate of the plane z=6—4v—3y for points of its

intersection with the cylinder a2 y2=1
We form the Lagrange function

F(x, ) :==6—4x—3y--h(x*+y2—1).

dF aF "
We have =——=— 4+ 2\Lx, B_T;=“3+2M' The necessary conditions yield the

gx
following system of equations:
— 44 2hx=0,
{ —3+42\y =0,
x4+t =1.

Solving this system we find

o g -
1 9 1 1— 5 . yl‘—gv
and
5 4 3
Rz*:-—‘i-, x::—-g' y=='—_5_o
Since
OF PF *F
m—zx, m—-o, E;_Eh,

it follows that
d:F =2\ (dx® 4 dy?).
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If 1:—52— . x—-%— and y=-—?;— , then d*F >0, and, consequently, the function
has a conditional minimum at this point. If A=— -g , X=— % and y:-———g— ;

then d*F <0, and, consequently, the function at this point has a conditional
maximurn.

Thus,
16 9
zmax=5‘|‘3”+?—_—“s
16 9
Zmin =6 —g —7 =1

6°. Greatest and smallest values of a function. A function thaf is diffe-
rentiable in a limited closed region attains
its greatest (smallest) value either at a sta-
tionary point or at a point of the boundary
of the region.

Example 3. Determine the greatest and
smallest values of the function

1. X

2=yt —xy+x+y é}fz-)
in the region '("
x{'aor yéol x”l‘y;‘_a

Solution. The indicated region is a tri-
angle (Fig. 70).
1) Let us find the stationary points:

(0,-3

[ 2,=2x—y { 1=0,

; Fig. 70
\ zﬂzz?y—x-i—l:{);
whence x-=— 1, y=—1; and we get the point M (—I1, —1)
At A the value of the function zz=-—1 1t is not absolutely necessary

to test for an extremum
2) Let us investigate the funciion on the boundaries of the region.
When x —0 we have z=y*4-y, and the problem reduces to seeking the
greatest and smallest values of this funcilion of one argument on the interval
—3<y=<0. Investigating, we tind that (z,)c_.,=6 at the point (0, —3);

1
(Zsm)vmg:—‘{l- at the point (0, —/,)
When y:=0 we get z=x*4-x. Similarly, we find that (z;,),.,=6 at the
point (—3, 0); (Zsm)yﬂ:— ‘ll_ at the point (—1/,, 0)

When x-y=—3 or y=—3—x we will have 2=3x*-9x 6. Similarly

3 . 3 3
we find {hat (zsm)x”:_,:_-a— at the point (—E-, —-?) s (Zgr) x4 pe n9=0
metres coincides with (2pe)e_o and (2ge)y_,. On the straight line x+4y=—3
we could test the function for a condifyional extremum without reducing to

a function of one argument.

3) Correlating all the values obtained of the function z, we conciude
that z,, =6 at the points (0, —3) and (=3, 0); 2zsm=-1 at the stationary
point M.

8—1900
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Test for maximum and minimum the following functions of
two variables:

2008. z=(x—1)" +-24".

2009. z=(x—1)"—24".

2010. z2=x"4+xy+y* —2x—uy.

2011, z=x"y* (6—x—1) (x>0, y>0).
2012, z=x*+y*—2x° +4xy—2_:;’.

2013. z=xy ]/1 , —

2014, z=1—(x* —{—y)’i-. i
2015, z=(x*+y*) e TV
l+x—y
2016. 2 =———r——.
Vitaty?
Find the extrema of the following functions of three variables:
2017. u=x"+y'+2'—xy+x—22.

2018, u=x+-§’§+§-+%(x>o, y>0, 2>0).

Find the extrema of the following implicitly represented func-
tions:

2019*. ¥*+y*+4+2"—2x44y—62—11=0.
2020, x’—y'--3x+44y+2"+2—8=0.

Determine the conditional extrema of the following functions:

2021. z=uxy for x+y=1.

2022, z=x+2y for x* 4 y* =5.
2023, z=x"+y l'or—;-—[-%-——-l.
2024, z=cos’x+cos*y for y—x:—z— .

2025. u=x—2y+2z for x*4+¢y*+2*=09.
2026, u=x'+ 0420 for S+l E—1@>b>c>0)

2027, u=xy’2’ for x+-y+2z=12(x>0,y>0, 2>>0).
2028. u=xyz provided x+y+z=95, xy+yz{z2x=8.
2029. Prove the inequality

X+y+z = Y/ %z,

if x=0, y=0, z=0.

Hint: Seek the maximum of the function u=xyz provided x4 y-+42=S.
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2030. Determine the greatest value of the function z=1 4 x4 2y
in the regions: a) x=0, y=0, x-y<sl; b) x=0, y<0,
x—y<l.

2031. Determine the greatest and smallest values of the func-
tions a) z=x%y and b) 2=x*—y* in the region x* +y* < 1.

2032. Determine the greatest and smallest values of the func-

tion z=sinx-siny-+sin(x+y) in the region 0<<x<<—

T 2"

2033. Determine the greatest and smallest values of the func-
tion z=x"-+y’—3xy in the region 0<x <2, —1<<y<?2.

Sec. 14. Finding the Greatest and Smallest Values of Functions

Example 1. It is required to break up a positive number ¢ into three
nonnegative numbers so that their product should be the greatest possible,

Solution. Let the desired numbers be x, y, t—x—y. We seek the maxi-
mum of the function f(x, y)=xy (a—x—y).

According to the problem, the function f(x, ¢) is considered inside a
closed triangle x=0, y =0, x4y <<a (Fig. 71),

(0,a)

(3.9

(0,0 X

Fig. 71

Solving the system of equations

{ felx, py=yla—2e—y) =0,
f, (%, y) =x(a—~x—2y)=0,
we will have the unique stationary point %—. %-) for the interior of the
triangle. Let us test the sufficiency conditions, We have
f;c:("" y)=—2y, f;y (%, y)=a—2x—2y, f;y (x, y)==—2x,
B‘
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Consequently,

A= fer (% %—)=—-—§- a,
=t (3 §)=—4e
C=f;y (% s %)=-— %a and
A=AC—B*>0, A<0,
And so at (%— %) the function reaches a maximum. Since f(x, y¥)=0 on

the contour of the triangle, this maximum will be the greatest value, which

is to say that the product w,I]E be greatest, if x=y=a—x—y=% , and the
greatest value is equal to _;7'

Note The ploblem can also be solved by the methods of a conditional
extremum, by seeking the maximum of the function u=xyz on the condition

that x+y+z=a.

2034. From among all rectangular parallelepipeds with a
given volume V, find the one whose total surface is the least.

2035. For what dimensions does an open rectangular bathtub
of a given capacity V have the smallest surface?

2036. Of all triangles of a given perimeter 2p, find the one
that has the greatest area.

2037. Find a rectangular parallelepiped of a given surface S
with greatest volume.

2038. Represent a positive number a in the form of a product of
four positive factors which have the least possible sum.

2039. Find a point M (x, y), on an xy-plane, the sum of
the squares of the distances of which from three straight lines
(x=0, y=0, x—y+1=0) is the least possible.

2040, Find a triangle of a given perimeter 2p, which, upon
being revolved about one of its sides, generales a solid of
greatest volume.

2041. Given in a plane are three material points P, (x,, y,),
P,(x,, y,), P,(x, y,) with masses m,, m,, m,. For what position
of the point P (x, y) will the quadratic moment (the moment of
inertia) of the given sysiem of points relative to the point P
(i.e., the sum m P P* +m,P,P*+m,P,P*) be the least?

2042. Draw a plane through the point M (a, b, ¢) to forn
a tetrahedron of least volume with the planes of the coordinates.

2043. Inscribe in an ellipsoid a rectangular parallelepiped of
greatest volume.

2044. Determine the outer dimensions of an open box with a
given wall thickness 6 and capacity (inlernal) V so thal the
smallest quantity of material is used to make it.
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2045. At what point of the ellipse
x! yt
=t

does the tangent line to it form with the coordinate axes a ftri-
angle of smallest area?
2046*, Find the axes of the ellipse

5x* 4 8xy + 5y* = 9.

2047. Inscribe in a given sphere a cylinder having the
greatest total surface.

2048. The beds of two rivers (in a certain region) approxi-
mately represent a parabola y= x* and a straight line x —y—2=0.
It is required to connect these rivers by a straight canal of least
length. Through what points will it pass?

2049. FFind the shortest distance from the point M (1, 2, 3)
to the siraight line
Y 4
-3 2"

—
=

X
1

2050*. The points A and B are situated in different optical
media separaled by a straight line (Fig. 72). The velocity of

B
A |
l [
a
a /3 Ib
' [
- | J
A, ] € B,
|
Fig. 72 Fig. 73

light in the first medium is v,, in the second, v,. Applying the
Fermat principle, according to which a light ray is propagated
along a line AMB which requires the lecast time to cover, derive
the law of reiraction of light rays.

2051. Using the Fermat priuciple, derive the law of rellection
of a light ray from a plane in a homogencous medium (Fig. 73).

2052*. If a current 7 llows in an eleciric circuit contlaining a
resistance R, then the quantity of heat relcased in unit time is
proportional to /*R. Determine how {o divide the current I into
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currents [,, /,, I, by means of three wires, whose resistances are
R,, R,, R,, so that the generation of heat would be the least
possible?

Sec. 15. Singular Points of Plane Curves

1°. Definition of a singular point. A point M (x, y,) of a plane curve
f(x, ¥)=0 is called a singular point if its coordinates satisfy three equations
at once:

f(xo' yd)zo' f; (xnl y0)=0t f‘;f (x01 go)-—_-0.

2°. Basic types of singular points. At a singular point M (x,, #,), let the
second derivatives

A= fo (%, #)s
B :f;y (X¢r Yok
C=[,, (% %)

be not all equal to zero and
A=AC—B?,
then:
a) if A>0, then M is an isolated point (Fig. 74);
b) if A<O0, then M is a node (double point) (Fig. T5);
¢) if A=0, then M is either a cusp of the first kind (Fig. 76) or of the
second kind (Fig. 77), or an isolated point, or a tacnode (Fig. 78),

Fig. 74 Fig. 75

When solving the problems of this section it is always necessary to draw
the curves.

Example I. Show that the curve y*=ax*4-x*® has a node if a >0; an
isolated point if a < 0; a cusp ol the first kind if a=0.

Solution. Here, f(x, y)=ax*+x*—y* Let us find the partial derivati-
ves and equate them to zero:

£ (%, 4) =2ax43x2=0,
f, &, g)=—2y=0.
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This system has two solutions: O (0, 0) and N(-——-%a, 0):'0111 the

coordinates of the point N do not satisfy the equation of the given curve.
Hence, there is a unique singular point O (0, 0),

< LT

Fig. 76 Fig. 77 Fig. 78

Let us find the second derivatives and their values at the point O:

f::;(x- y]=2ﬂ+6x. At?ﬂ,
f:*y (x! y)=0| B::O.

fy (50 ) =—2, C=—2,
A=AC—B*=— 4a,

Yl
1 4
4 Y a=0
|
a>0 =
a<g ———
= N
0 £ X
Fig. 79 Fig. 80 Fig. 8l

Hence,

if a>0, then A< 0 and the point O is a node (Fig. 79);
if a< 0, then A >0 and O is an isolated point (Fig. 80);
if a-=0, then A=0, The equation of the curve in this case will be

yi=x* or y=+ V'x¥; y=exists only when x==0; the curve is symmetric
about the x-axis, which is a tangent. Hence, the point M is a cusp ol the
first kind (Fig. 81).
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Determine the character of the singular points of the follo-
wing curves:

2053. y*=—x" 4-x*.

2054, (y—x')* =x".

2055. a'y® =a’x*—x".

2056, x*y*—x'—y* =0,

2057. x*+y*—3axy=0 (folium of Descartes).

2058. y*' (a—x)=x" (cissoid).

2059. (x*+y*)*=a® (x* —y*) (lemniscate).

2060. (a-+x)y'=(a@a—x)x* (strophoid).

2061. (x"+¢*) (x—a)'=b'x* (a>0, b>0) (conchoid).
Consider three cases:

1) a>b, 2) a=b, 3) a<b.

2062. Determine the change in characler of the singular point
of the curve y*=(x—a)(x—b) (x —c¢) depending on the values of
a, b, c(asb<c are real).

Sec. 16. Envelope

1°. Deflnition of an envelope. The envelope of a family of plane curves
is a curve (or a set of several curves) which is tangent to all lines of the
given family, and at each point is tangent to some line of the given family.
2°. Equations of an envelope. If a family of curves

f(x, y, a)=0

dependent on a single variable parameter @ has an envelope, then the para-
metric equations of the latter are found from the system of cquations

{ f(x, y, 0)=0,

f;z(x! Y, a)=0. ki

Eliminating the parameter o from the system (1), we get an equation of
the form

D (x, y)=0. (2)

It should be pointed out that the formally obtained curve (2) (the so-
called “discriminant curve”) may contain, in addition to an envelope (ii
there is one), a locus of singular points of the given family, which locus 1s
not part of the envelope of this family.

When solving the problems of this section it is advisable to make
drawings.

Example. Find the envelope of the family of curves

xcosa+ysina—p=0(p=const, p > 0).
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Solution. The given family of curves depends on the parameter a. Form
the system of equations (1):

{ xcosotysina—p=0,
— xsina+4-y cosa=0.

Solving the system for x and y, we obtain parametric equations of the

envelope
X=pcosa, y=psina,

Squaring both equations and adding, we eliminate the parameter a:
x4 = pt,

g

}<

g, 82

Thus, the envelope of this family of straight lines is a circle of radius p
with centre at the origin. This particular family of straight lines is a family
of tangent lines to this circle (Fig. 82).

2063. Find the envelope of the family of circles

(x—a) +y‘=% :
2064. Find the envelope of the family of straight lines
- P
y=kx+g

(k is a variable parameler).
2065. Find the envelope of a family of circles of the same
radius R whose centres lie on the x-axis.
2066. Find a curve which forms an envelope of a section
of length | when its end-points slide along the coordinate axes.
2067. Find the envelope of a family of straight lines that
form with {he coordinate axes a triangle of constant area S.
2068. Find the envelope of ellipses of constanl area S whose
axes of symmetry coincide.
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2069. Investigate the character of the “discriminant curves”
of families of the following lines (C is a constant parameter):

a) cubic parabolas y=(x—C)";

b) semicubical parabolas y* = (x—C)*;
c¢) Neile parabolas y* = (x—C)*

d) strophoids (@ +x) (y—C)' =" (a—=x).

Y
i -

P
0 X

Fig. 83

2070. The equation of the trajectory of a shell fired from a
point O with initial velocity v, at an angle a to the horizon
(air resistance disregarded) is

JL'!
y=xtan a-—-—-—-zi-—— .
2v,cos® o

Taking the angle a as the parameter, find the envelope of all
trajectories Of the shell located in one and the same vertical
plane (“safety parabola”) (Fig. 83).

Sec. 17. Arc Length of a Space Curve

The differential of an arc of a space curve in rectangular Cartesian coor-
dinates is equal to

ds=V dx*+ diy? +dz?,

wheref x, y, z arc the current coordinates of a point of the curve.
I
x=x(f), y=y), z=z(!)
are parametric equations of the space curve, then the arc length of a section
of it from £=¢, to t=t, is
iy
- dx \?2 dy \* dz \?
=V (&) + (5 + (&) e

L
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In Problems 2071-2076 find the arc length of the curve:

2071, x=t, y="1', z=2 from £=0 to {=2.

2072. x=2cosi, y=2sint, z:—f-c—t from =0 to {=m.
t

2073. x=¢'cost, y=e'sinf, z=e' from =0 toarbitrary &

x?

2074, y:—xgi, 2= from x=0 to x=6.
2075. x*=3y, 2xy=92z from the point 0(0,0,0) to M (3, 3, 2).

2076. y=aarc sin% , Ta= %tn zi: from the point 0(0, 0, 0)

to the point M (x,, y,, 2,).
2077. The posilion of a point for any time ¢ (f >0) is defined
by the equations

f*.
Find the mean velocity of molion beiween times { =1 and £ =10,

x=2¢, y=Int, 2

Sec. 18. The Vector Function of a Scalar Argument

1°. The derivative of the vector function of a scalar argument. The vector
function a=a (t) may be defined by specifying three scalar functions ay(t),
a, (t) and a, (f), which are its projections on the coordinate axes:

a=a (1) i+ay, () j+a; (1) k.

The derivative of the vector function a==a (f) with respect to the scalar
argument ¢ is a new vector function defined by the equality

da _ o alt+AN—a(t)_dac (), 94 () . da,

df — Afoso Al =—gi gt =5

The modulus of the derivative of the vector function is

|-V @) (@) (%)
riln (E R &30 e B i
The end-point of the variable of the radius vector r=r(t) describes in space

the curve
r=x()I4+y{l)j+2z(i)&,
which is called the hodograph of the vector r.

(t)
k.

The derivative s is a vector, tangent to the hodograph at the corre-

dt
sponding point; here,
P g P dr | _ds
Idt | at '’
where s is the arc length of the hodograph reckoned from some initlal point.

For example, -335 |= k.
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é:u is the velocity vector of the

=q is the acceleration vector of the

[f the parameter ¢ is the time, then

_ d'r _ dv
extremity of the vector r, and TR a7

extremity of the vector r.
2°. Basic rules for diﬂ'erentlatlng the vector function of a scalar argument.

db de

(a+b— f-')_" di a2

2) E- (ma):m‘i—t , Wwhere m is a constant scalar;

dtp

) cu

a-+t ¢ —— fit , where @ (f) is a scalar function of {;

4) dt @t)=9% a2

5) dt (axb)=—2- d“ L Xb+ax—

d du dg |
B)BT“[ P (£)] = do T ar’
da

7) a«m—wﬂ if |a|=const.

Example 1. The radius vector of a moving point is at any instant of
{ime defined by the equation

3) dt (qm]"

db
ar

r=1i—A42 4 3%. ()

Determine the trajectory of motion, the velocity and acceleration.
Solution. From (1) we have:
x=1, y=—41 z=3/%

Eliminating the time ¢, we find that the trajectory of motion is a straight
line:

x—1 y 2
0  —4 3°
From equation (1), differentiating, we find the velocity
dar
d—t—-—-Stj—l-Gtk
and the acceleration
dr__
FTE —8j 6&.

The magnitude of the velocity is

=V (=807 + (66)*=10]1|.

We note that the acceleration is constant and is

V=T =0,

di2
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2078. Show that the vector equation r—r,=(r,—r))¢,
where r, and r, are radius vectors of two given pomls is the
equatlon of a stra:ght line.

2079. Determine which lines are hodographs of the following
vector functions:

a) r=at +c; ¢) r=acos!+bsint;
by r=at*-+-bf; d) r=acosht--bsinht,

where a, &, and ¢ are constant vectors; the vectors @ and &
are perpendicular to each other.

2080. Find the derivative vector-function of the function
a(f)=a(t)a’(t), where a(f) is a scalar function, while a°(¢)
is a unit vector, for cases when the vector a(f) varies: 1) in
length only, 2) in direction only, 3) in length and in direction
(general case). Interpret geometrically the results obtained.

2081. Using the rules of differentiating a vector funclion with
respect to a scalar argument, derive a formula for differentiating
a mixed product of three vector functions a, b, and c.

2082. Find the derivative, with respect to the parameter f,
of the volume of a parallelepiped constructed on three vectors:

a=I1-1j1t*k;
b=2ti—j-i t'k;
c=—1-L1] 1k
2083. The equation of motion is
r—=3icost-4-4fsint,

where ¢ is the time. Determine the frajectory of motion, the
velocity and the acceleration. Construct the trajectory of motion

and the vectors of velocity and acceleration for times, ¢{=0,
i

t-_:“—1- and t__

2084. The equatlon of motion is
r=2Icost+42jsint -- 3kt

Delermine the trajectory of motion, the velocity and the accel-
eralionn. What are the magnitudes of velocity and acceleration

and what directions have they for time {=0 and t_—?
2085. The equation of motion is

r = {cos a cos wt - jsin a cos wf + & sin of,

where @ and o are constanis and ¢ is the time. Determine the
trajectory of motion and the magnitudes and directions of the
velocity and the acceleration.
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t

2086. The equation of motion of a shell (neglecting air re-

sistance) is
2

g
Tk

r=uv,t—

where v, {v,,, U4y Uo.f is the initial velocity. Find the velocity
and the acceleration at any instant of time.

2087. Prove that if a point is in motion along the parabola

y=--, 2=0 in such a manner that the projection of velocity

- " d’t
on the x-axis remains constant (F

=const), then the accelera-

tion remains constant as well.
2088. A point lying on the thread of a screw being screwed
into a beam describes the spiral

x=acosb, y=asinB, z=hb,

where 0 is the turning angle of the screw, a is the radius of the
screw, and A is the height of rise in a rotation of one radian.
Determine the velocity of the point.

2089. Find the velocity of a point on the circumference of a
wheel of radius a rotating with constant angular velocity o so
that its centre moves in a straight line with constant velocity v,.

Sec. 19. The Natural Trihedron of a Space Curve

At any nomsingular point M (x, y, z) of a space curve r=r(t) it is pos-
sible to construct a natfural trihedron consisting of three mutually perpen-
dicular planes (Fig. 84):

2

1) osculating plane MM, ,M,, containing the vectors % and gé;

2} normal plane MM M,, which is perpendicular to the vector % and

3) rectifying plane MM, M,, which is perpendicular to the first {wo planes.

At the intersection we oblain three straight lines;

1) the fangent MM,; 2) the principal normal MM,; 3) the bunormul MM,,
all of which are defined by the appropriate vectors:

1) 1‘=% (the vector of the tangent line);
2
2) 3=%><‘§-£%' (the vector of the binormal);

3) N=BXT (the vector of the principal normal);

The corresponding unit vectors

A
17|

B1° “TIN]
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o2

may be computed from the formulas

dv
pmii; weaar p=rxv
ds ' dr |’ o '
%

If X, Y, Z are the current coordinates of the point of the tangent, then
the equations of the tangent have the form

X—x Y—y Z—z2 )
T 1. T3 °

Rectifying Normal
plane

U
Osculatlng
plane

M

Fig. 84
where Tx—=%: T',,=%:’— , T,=g%- ; from the condition of perpendicularity

of the line and the plane we get an equation of the normal plane:

Ty (X—=x) 4Ty (Y —0) + T, (Z—2) =0, (@)

If in equations (1) and (2), we replace T, Ty, T, by By, B,, B, and N,,
N),. N, we get the equations of the binorma and the principal normal and,
respectively, the osculating plane and the rectifying plane,

Example 1. Find the basic unit vectors ¥, v and B of the curve

x=1, y=1*, p=1*
at the point f=1.
Write the equations of the tangent, the principal normal and the binor-
mal at this point.
Solution. We have
r=1ti4-1* 4tk

T‘;{.=i+2u+ 31k,

dr
i 2j+ 6tk,

and
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Whence, when =1, we get

=2 11243

dt
i jR
B=g—;—><$= 1 2 3|=06i—6j-2k;
026
I j R
N=BxXT=|6 —6 2|=—22{—16j- 18k.
1 2 3
Consequently,
s i+2j+ 3% B 3A—3j+k v —11i—8j+ 9%
yia yig YV 266 )

Since for t=1 we have x=1, y=1, z=1, it follows that
r—1 y—1 z—I
1 — 2 3
are the equations of the tangent,
x—1 y—1 z-—1
3 =3 1
are the equations of the binormal and

x—1 y—1 2z2-—1
—I11 -8 9
are the equations of the principal normal.
If a space curve is represented as an intersection of two surfaces

F(x, y, 2)=0, G(x, y, 2)=0,

i 2
then in place of the vectors % and j—; we can take the vectors dr {dx, dy, dz}

and d?r {dx, d’y, d’z}; and one of the variables x, y, z may be considered
independent and we can put its second differential equal to zero.
Example 2. Write the equation of the osculating plane of the circle

Kyt 422=6, x4y+2z=0 (3)

at 1ts point M (1, 1, —2).

Solution. Differentiating the system (3) and considering x an independent
variable, we will have

xdx+ydy+zdz=0,
dx+dy-+dz=0
and
dx®+dy* 4 ydiy+dz?+ zd%2 =0,
d*y+d*2=0,
Putting x=1, y=1, z=—2, we get
dy-—=—dx; dz=0;

z____E 2, a__2__ 2
d*y= de, dz_-3 dx®,



Sec. 19) The Natural Trihedron of a Space Curve 241

Hence, the osculating plane is defined by the vectors

{dx, —~dx, 0} and {0, —%-dx’. %dx’}

or
{1, —1, 0} and {0, —1, 1}.
Whence the normal vector of the osculating plane is

i jk
B=(1 —1 0|=—1—j—&k
0 —1 1

and, therefore, its equation is
— 1 {x—1)—(—1)—(2+2)=0,
that is,
x+y+2z2=0,

as it should be, since our curve is located in this plane.

2090. Find the basic unit vectors v, v, p of the curve
x==1—cost, y=sint, z={

at the point f=-.

2091. Find the unit vectors of the tangent and the principal
normal of the conic spiral

r=e'(lcost -jsint k)

at an arbitrary point. Determine the angles that these lines make
with the z-axis.

2092. Find the basic unit vectors v, v, § of the curve

=X, T=2x
at the point x=2.
2093. For the screw line

x=agost, y=asint, =)}

wrile the equations of the straight lines that form a natural
trihedron at an arbitrary point of the line. Determine the direc-
tion cosines of the tangent line and the principal normal.

2094. Write the equations of the planes that form the natural
trihedron of the curve

x’+y’+z’=ﬁ, xz_yzri*zz:‘q_

at one of its points M (1, 1, 2).

2095, Form the equations ot the tangent line, the normal
plane and the osculating plane of the curve x=¢, y=¢', z=1¢*
al the point M (2, 4, 8).
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2096. Form the equations of the tangent, principal normal,
and binormal at an arbitrary point of the curve
A (4 t?
= ITE e
Find the points at which the tangent to this curve is parallel
to the plane x+4-3y+4 22— 10=0.
2097. Form equations of the tangent, the osculating plane,
the principal normal and the binormal of the curve
x=t, Y=—I1, z=-t2—!
at the point /=2. Compute the direction cosines of the binormal
at this point.
2098. Write the equations of the tangent and the normal
plane to the following curves:

a) x=Rcos't, y=R sintcost, z=R sint for t=£‘4..;

b) z=x"+y*, x=y at the point (1, 1, 2); _
¢) ' 4y*+22=25, x+2z=>5 at the point (2, 21/3, 3).

2099 Find the equation of the normal plane to the curve
z=x*—y*, y=x at the coordinate origin.

2100. Find the equation of the osculating plane to the curve
x=é, y=e-t, 2=t} 2 at the point {=0.

2101. Find the equations of the osculating plane to the curves:

a) X* +y'+2°=9, x—y*=3 at the point (2, [, 2);
b) x* =4y, x'=24z at the point (6, 9, 9);
¢) x*+2*=a y*' +2*=>5" at any point of the curve (x,, y,, z,).

2102. Form the equations of the osculating plane, the principal
normal and the binormal to the curve

y*=x, ¥*=2 at the point (1, 1, 1).

2103. Form the equations of the osculating plane, the princi-
pal normal and the binormal to the conical screw-line x=1£ cos ¢,
y=tsinf, z=~>0¢ at the origin. Find the unit vectors of the
tangent, the principal normal, and the binormal at the origin.

Sec. 20. Curvature and Torsion of a Space Curve

1°. Curvature. By the curvaiure of a curve at a point M we mean the
number

zliﬂl_c-&.

1
K= R As+o As

]
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where @ is the angle oEJurn of the tangent line (angle of contingence) on a
segment of the curve MN, As is the arc length of this segment of the curve,
R is called the radius of curvature. 1f a curve is defined by the equation
r=r(s), where s is the arc length, then
¥ = d_’:l
R~ |dstl”
For the case of a general parametric representation of the curve we have
dr, d'r
1 ldt"dr?
R="Jarp " (1)
dt
2°. Torsion. By forsion (second curvalure) of a curve at a point M we
mean the number

0

= lim ——

1
T__Q- As—o As'’

where 0 is the angle of turn of the binor’xyal (angle of contingence of the
second kind) on the segment of the curve M.V. The ?uantity ¢ is called the
radius of torsion or the radius of second curvature. 1f r=r(s), then
drd'rdr

dsds®ds®

@&

where the minus sign is taken when the vectors % and v have the same
direction, and the plus sign, when not the same.
Il r=r(t), where t is an arbitrary parameter, then

.| dp
E‘i\ds

dr d*r d'r
1 dide* d®
¢ Tar, Py ¥
dt = di?
Example 1. Find the curvature and the torsion of the screw-line
r=Ilacosi{-{jasini{-| kbt (@a>0).
Solution. We have
j’?‘“‘ —tasint+ jacos t+kb,
d*r
7 —{acost—jasint,
d’r
Wm—lasint—-ja cosf.
Whence i k
i
|
g_:.'x%= —asint acos! b|={dabsint—jabcost{a'k

—acost —asint 0
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and b
2, 43 —asint acost
%%%= —acost —asint 0|=a?b.
asint —acost 0

Hence, on the basis of formulas (1) and (2), we get
1 a ]fa*-{-b‘_ a
R ™ (g24-8%)°h a*4 b2

and
I azb b
o a’(a®+b6%) a’4-b°’
Thus, for a screw-line, the curvature and torsion are constants.
3° Frenet formulas:

dt_ . v dv_ v B df v
"R & RVtQ d~ "¢

2104. Prove that if the curvature at all points of a line is
zero, then the line is a straight line.

2105. Prove that if the torsion at all points of a curve is zero,
then the curve is a plane curve.

2106. Prove that the curve

x=1-4+3t+21°, y=2—2¢-+-5¢*, z2=1—-1*
is a plane curve; find the plane in which it lies.
2107, Compute the curvature of the following curves:
a) x=cost, y=sinf, z=-cosh ¢ at the point {=0;
b) x*—¢*--2°=1, y* —2x-}-2=0 at the point (1, 1, 1).

2108. Compute the curvature and torsion at any point of the
curves:

a) x=¢e'cost, y=-e'sint, z=-¢';

b) x=acosh {, y=asinht z=at (hyperbolic screw-line).

2109. Find the radii of curvature and torsion at an arbitrary
point (x, y, z) of the curves:

a) x'=2ay, x’==6az;

b) x*=3py, 2xz2=p*.

2110. Prove that the tangential and normal components of
acceleration w are expressed by the formulas

where © is ihe velocity, R is the radius of curvature of the
trajectory, ¥ and v are unit vectors of the tangent and principal
normal to the curve,
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2111. A point is in uniform motion along a screw-line r =
= Jacost--jasint+ btk with velocity v. Compute its accelera-
tion w.

2112, The equation of motion is

r=ti-+j+ 'k
Determine, at times f=0 and ¢{=1: 1) the curvature of the

trajectory and 2) the tangential and normal components of the
acceleration,



Chapter VII
MULTIPLE AND LINE INTEGRALS

Sec. 1. The Double Integral in Rectangular Coordinates

1°. Direct computation of double integrals, The double integral of a con-
tinuous function f(x, y) over a bounded closed region S is the limit of the
corresponding two-dimensional integral sum

(f paxdy= tim  F D e va) Ax A M
[k

(S) max Axy-»q
max Ay —> 0

where Ax;=Xj4y—X; AYp=Yyp+,—Yp and the sum is extended over those
values of i and £ for which the points (x;, y,) belong to S.

2°. Setting up the limits of integration in a double integral. We dis-
tinguish two basic types of region of integration.

Fig. 85 Fig. 86

1) The region of integration S (Fig. 85) is bounded on the left and right
by the straight lines x=x, and x=x Ax,> x,), from below and from above
by the continuous curves y=g, (x){ B) and y =, (x) (CD) [g, (x) =, (x)].
each of which intersects the vertical x= X (x, =< X < x,) at only one point (see
Fig. 85). In the region S, the variable x varies from x, to x,, while the va.
riable y (for x constant) varies from y, = @, (x) to y,= @, (). The integral (1) may
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be computed by reducing fo an iterated integral by the formula

SS Fix, y)dx dy:? dx %Sm f(x, o) dy,
(S) X, P (x)
@a (x)

where x is held constant when calculating S f(x, y) dy.

(x

2) The region of integration S is hour?clled) from below and from above
by the straight lines y=y, and y=y,(ye > y,), and from the left and the
right by the continuous curves x =9, () f B) and x =1, (y) (CD) [}, () =¥, ()],
elgch gﬁwhich intersects the parallel y=Y (y, <Y <y, at only one point

ig. 86).
{ E"As before, we have
va Wl

SSf{x. y)dxdyzgdy S f(x, y)dx,
(S) i P, (y)
W, ()
here, in the integral S f(x. y)dx we consider y constant.
P, ()

If the region of integration does not belong to any of the above-discussed
types, then an attempt is made to break it up into parts, each of which does
belong to one of these two types.

Example 1. Evaluate the integral

1 1

I:Smgu+m@.
0 L1

Solution.

=§ ()2 = § (s 5) = (4] o=

Example 2. Determine the limits of integration of the integral

SSf(x. y) dx dy
()
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if the region of integration S (Fig. 87) is bounded by the hyperbola y* —x*=1
and by two straight lines x=2 and x=—2 (we have in view the region con-
taining the coordinate origin).

Solution. The region of integration ABCD (Fig. 87) is bounded by the
straight lines x = —2 and x=2 and by two branches of the hyperbola

y=Vid+x* and y=—VIi+a;
that is, it belongs to the first type. We have:

2 Vitx?

(1 naxdy={ar | fex oy
(S) =2 Vi
Evaluate the following iterated integrals:
2 1 3 B
2113, { dy { (=" + 29) dx. 2117, (dy | (v+29)dr.
0 0 -1 W—a
s : d 2n a
2114 de (xfy,.- 2118. {do { rdr.
3 1 0 asing
b8
A 2 x*dy 2 2c08Q
2115. de T 2119. gdcp S rsin®*qdr.
0 0 It 0
2 X *
xdy 1 Vi )
2116. S‘“‘S?- 2120. {dx { VI=x"—¢"uy.
— 0 0

Write the equations of curves bounding regions over which the
following dduble integrals are extended, and draw these regions:

2121. f(iy T’ f(x, y)dx. 2124, fdx?f(x, y) dy.
=& 1 X
3 x:o 2 v"m:
2122. gdxs f(x, y)dy. 2125. {dx { f(x, p)dy.
2123. §dyms_yf(x, y) dx. 2126. fdxx§=f(x, ¥ dy.
0 Y -1 x3

Set up the limits of integration in one order and then in the
other in the double integral

(§F(x pdxdy
(S)
for the indicaled regions S.
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5 2127. S is a rectangle with vertices 0 (0, 0), A(2, 0), B(2, 1),
0, 1).

2128. S is a triangle with vertices 0 (0, 0), A (1, 0), B(1, 1).

2129. S is a trapezoid with vertices 0 (0, 0), A (2, 0), B(1, 1),
C (O, 1).

2130. S is a parallelogram with vertices A (1, 2), B(2, 4),
C2, 7, D(1, 8).

2131. S is a circular sector OAB with cenire at the point
O (0, 0), whose arc end-points are 4 (1, 1) and B(--1, 1) (Fig. 88).

B(-11) Al1,1)

===
0 X
Fip 88 Fig 89

2132. S is a night parabolic segment AOB bounded by the
parabola BOA and a segment of the straight line BA connecting
the points B(—1, 2) and A(l, 2) (Fig. 89).

2133. S is a circular ring bounded by circles with radii r=1
and R==2 and with common centre 0 (0, 0).

2134. S is bounded by the hyperbola y*—x* =1 and the circle
x* | y* =9 (the region containing the origin is meant).

2135. Set up the limils of integralion in the double integral

gg [(x, y)dxdy

{S)

if the region S is defined by the inequalilies

a) x=0; =0, x--y<l;, d) yr-x x=—1;, y<I1;
b) £*-}y*<<a’ e) yssx =<y 2a;
c) »* << x: 0<y<a.

Change the order of integration in the following double integrals:

1 12x 1
2136. de S Fx, y)dy. 2137. de Sxf(x, y)dy.
0 3x3 0 2%
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a Vai-x3

1 1-y
2138. {dx [ fx pay. 2141 §dy | [ix yax.

v
a
a Vax-x3 1 Va-a
2139. (ax  § fer, pay.  2142. {dy § [ pax.
0 s
: Cs
22 Vaax
2140. gdx S f(x, y)dy.
o Vax=x3

]
<

x VRi—x2

R
2143. dng(x, y)dy -+ s dx S F(x, y)dy.
RVa

L%

0 0

]

sin x

2144. §dx Sf(x, y) dy.

Evaluate the following double integrals:
2145. {{ xdxdy, where S is a triangle with vertices 0 (0, 0),

(S)
A(l, 1), and B(0, 1).

y
; Y
B(G2)
S B(G1) Al1,1)
c(g,1)
0 Al2,0)x 0 X
Fig. 90 Fig. 91

21486. SSxdxdy, where the region of integration Sis bounded

(S)

by the straight line passing through the points A (2, 0), B(0, 2)
and by the arc of a circle with centre at the point C (0, 1), and
radius 1 (Fig. 90).
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dx dy . . .
2147. 551/-?—‘, where S is a part of a circle of radius

a with centre at 0(0, 0) lying in the first quadrant.
2148. SSVJC y*dxdy, where S is a triangle with vertices
(S
0 (0, 0), A(l —1), and B(1, 1).
2149. Sg]fxy— dxdy, where S is a ftriangle with vertices
s
0 (0, 0), A(IO, 1), and B(l, 1).

X
2150. Sg evdxdy, where S is acurvilinear triangle 0AB bound-
(S)

ed by the parabola y*=x and the straight lines x=0, y=1

2151. SS%E%—’J where S is a parabolic segment bounded by

the parabola yug and the straight line y=x.

2152, Compute the integrals and draw the regions over which they
extend:

i1 14+Co8 X _ﬂ
a) ude Sa y* sin xdy; § -cciux —_—

When solving Problems 2153 to 2157 it is abvisable fo make
the drawings first.

21563. Evaluate the double integral
ﬁ xy dx dy,
(S)

if S is a region bounded by the parabola y* =2px and the straight
line x=p.
2154*, Evaluate the double integral

ngydxdy,
(S)

extended over the region S, which is bounded by the x-axis
and an upper semicircle (x-—2) +y'=1l.
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2155. Evaluate the double integral
dx dy
5 [ V 2a—x’

(S

where S is the area of a circle of radius a, which circle is tan-
gent to the coordinate axes and lies in the first quadrant.
2156*. Evaluate the double integral

({ydxdy,
(S

where the region S is bounded by the axis ol abscissas and an
arc of the cycloid

x=R (f —sint),

y=R (1 —cos ).

2157. Evaluate the double integral

S S xydxdy,
()

in which the region of integration S is bounded by the coordi-
nate axes and an arc of the astroid

x=Rcos’t, y=R sin' ¢ (0@&:—‘}).

2158. Find the mean value of the function f(x, y) = xy® in the
region S{0<x<1, O0sy<l}.

Hint. The mean value of a function f(x, y) in the region S is the number

T=< gf{x, ) dx dy.
(S)

2159. Find the mean value of the square of the distance of
a point M (x, y) of the circle (x —a)* +y* < R? from the coordi-
nate origin.

Sec. 2. Change of Variables in a Double Integral

1°. Double integral in polar coordinates. In a double integral, when passing
from rectangular coordinates (x, y) to polar coordinates (r, ¢), which are
connected with rectangular coordinates by the relations

X=1rCos Q, y=rsing,
we have the formula

ng(x, y)dxdy—_-:ss (r cos @, rsin @) r dr de, (N
(S) (S)
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If the region of integration (S) is bounded by the hali-lines r=a and
r=f(ec<P) and the curves r=r,(p) and r=r,(¢), where r,(p) and
ry (@) [ry (@) <<r,(¢)] are single-valued functions on the interval a <p <8,
then the double integral may be evalualed by the formula

By
SSF(cp. r)rdrd(p:Sdtp S F (g, r)rdr,
(S) a ()
ra (@)
where F (p, r)=J(rcos¢, rsing). In evaluating the integral S F(p, ryrdr
r, (@)

we hold the quantity ¢ constant.

I[f the region of integration does mot belong to one of the kinds that has
been examined, it is broken up into parts, each of which is a region of a
given type.

2°. Double integral in curvilinear coordinates. In the more general case,
il in the double integral

SSf(x, y)ydxdy

(S

it is required to pass from the variables x, y to the variables u, v, which
are connected with x, y by the continuous and differentiable relationshins

x-=qp(u, v, y—=y (u, v)

{hat establish a one-to-one (and, in both directions, continuous) correspondence
between the points of the region § of the xy-plane and the points of some
region 8’ of the UV-plaue, and if the Jacobian

dx dy
_D(x, y)_|0udu
" Dw, v) |dx dy
du dv

retains a conslant sign in the region S, then the formula

SS[(J{, ) da dy::SS[[(p(u, v), $(u, v)]|7|dudv

(5) (»")

holds true

The limits of the new integral are determined from general rules on the
basis of the type of region S’

Example 1. In passing to polar coordinales, evaluate

SS VT—.\:”-—;;" dx dy,
(S)
where the region S is a circle of radius R=1 with centre at the coordinafe

origin (Fig 92).
Solution. Pulting x =rcos@, y==rsin g, we obtain:

V'l—x‘—yﬁz lfl — (rcos @) — (rsing)*= Vl -n
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Since the coordinate r in the region S varies from 0 to 1 for any @, and ¢
varies from 0 to 2=x, it follows that

n 1
SSI Vi —x2—yt dxdy=qu}3 r Vl-—-r‘dr:% i
(S) 0 0

Pass to polar coordinates r and ¢ and set up the limits of
integration with respect to the new variables in the following
integrals:

2160. {dx { [ (x, o) dy. 2161. {dx (f (VT ) dy.
a o 0 0
2162. {{/(x, ) drdy,
(5)
where S is a triangle bounded by the straight lines y=x, y=—x,
y=1.

2163, S'dxj'f (%) dy.

2164. ng(x, y)dxdy, where S is bounded by the lemniscate

(S)

(¢ +4') =a® (* — ¢').

Fig. 92 Fig. 93
2165. Passing to polar coordinates, calculate the double inte
gral
Sg ydxdy,
(S)

where S is a semicircle of diameter a with centre at the poin
C(3, 0) (Fig. 93).
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2166. Passing to polar coordinates, evaluate the double inte-
gral

{§ ot +p) dray,
(S)

extended over a region bounded by the circle x*4-y* = 2ax.
2167. Passing to polar coordinates, evaluate the double in-
tegral

SS Va—x*—y*dxdy,
(S)
where the region of integration S is a semicircle of radius a with
centre at the coordinate origin and lying above the x-axis.
2168. Evaluate the double integral of a function f(r, ¢)=r
over a region bounded by the cardioid r=a(l 4+ cos @) and the
circle r=a. (This is a region that does not contain a pole.)
2169. Passing to polar coordinates, evaluate

a Vai=x?

de g V X+ 4t dy.
0 0
2170. Passing to polar coordinates, evaluate

S S Va—x*—y*dxdy,

(S)

where the region S is a loop of the lemniscate
(' +y) =a'(*—y") (x=0)
2171*, Evaluate the double integral

J. g ]/ 1 -—’;—:—‘!;’—z,dxdy,

(S)

extended over the region S bounded by the ellipse E—:+‘5’b—:=l by
passing to generalized polar coordinates:

Z=rcosg, +=rsing.
2172%*, Transform
¢ Px
§dx § £ ex, pyay
0 ax

(0<a<<Pp and ¢>0) by introducing new variables u=x+y,
uv =y.
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256
2173*. Change the variables u=x-4y, v=x—y in the integral

1 1

deSf(x. y) dy.
0 0
2174*+, Evaluate the double integral
\ { dxdy,

(S)

where S is a region bounded by the curve
2y

P yﬂ
(F+5) =55

Hint. Make the substitution
x==arcos @, y=>brsinq.

Sec. 3. Computing Areas
1°. Area in rectangular coordinates. The area of a plane region S is

S :S S dx dy.
(S)
If the region S is defined by the inequalities e<x<<bh, Q) =<y<<P(x),

then
b P(x)
Szgdx S dy.
a ¢ (X)

2°. Area in polar coordinates. If a region S in polar coordinales r and @

is defined by the inequalities a<<p<<fB, f(p)<<r<<F(¢), then
. B F (@)

S=SSrd(pdr= S dg S rdr.
(S) « F (@)

2175. Construct regions whose areas are expressed by the in-

fegrals
2 x+2 a Var=y2
a) S dx de; b) de S dx.
-1 0 a=-y

x2

Evaluate these areas and change the order of integration.
2176. Construct regions whose areas are expressed dy the in-

tegrals
arc tang 3 sec @ a (1+4cos @)

S de S rdr; b) §drp rdr.

a)
n L] _il_
H]

@

Compute these areas.
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2177. Compute the area bounded by the straight lines x=y,
x=2y, x+y=a, x4+3y=a(a>0).

2178. Compute the area lying above the x-axis and bounded
by this axis, the parabola ¢* = 4ax, and the straight line x -+ y=3a.

2179*. Compute the area bounded by the ellipse

(y—x)" -+ =1.
2180. Find the area bounded by the parabolas
y*=10x--25 and y*=—6x} Q.

2181, Passing to polar coordinates, find the area bounded by
the lines
Xt yt=2x, X*-+y*=4x, y=x, y=0.

2182. Find the area bounded by the straight line r cosg@=1
and the circle r=2. (The area is not io contain a pole.)
2183. FFind the area bounded by the curves

r=a(l-Fcosq) and r—=acos ¢ (a=0).

2184. Find i{he area bounded by the line

xz U? - _ .\'2 u'-’.
(T+E)”T“b‘

2185* Find the area bounded by the ellipse
(x—2y + 3)* -+ (3x--4y—1)*=100.

2186. Find the area of a curvilinear quadrangle bounded by
the arcs of the parabolas x*=ay, x*=0by, Y =cax, y¥=p0<
<a<b, 0<<Ca<p).

Hint. Introduce the new variables « and v, and put

x*=uy, y*==uvx.

2187. Find the area of a curvilinear quadrangle bounded by
the arcs of lhe curves y* =ax, y' =0bx, xy=a, xy=030<<a<<b,
0<<a<f).

Hint. Introduce the new variables u and v, and put

Xy=gb.. P=0x

9 —1900
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Sec. 4. Ccmputing Volumes

The volume V of a cylindrotd bounded above by a continuous surface
z=1f(x, y), below by 1helplz-ne 2=0, and on the sides by a right cylindrical
surface, which culs out of the xy-plane a region S (Fig. 94), is equal to

V= Sms } (%, y) dx dy.

2188. Use a double integral to express the volume of a pyra-
mid wich vertices 0(0,0 0), A(1,0. ), B(l,1,0) and C(0, 0, 1)
(Fig. 95). Set up the limits ol integralion.

Fig. 94 Fig. 95

In Problems 2189 to 2192 skelch the solid whose volume is
expressed by the given double integral:

1 1-x 2 Vi-e
2189. de S(l—x-—y)dy. 2191, de S (1— x) dy.
o!. !ﬂ—z u! Zu
2190. {dx { 4—x—p)dy. 2192. (ax 4 —x—yp)ay.
2193. ékeicﬁ the solid whose volun‘r;e iszza;prcssed by the in-
u Vai-xs

tegral S'dx 5 V& — @ —y*dy;, reason geometrically to find the

0
value of this“integral.

2194. Find the volume of a solid bounded by the elliptical
paraboloid z=2x* +y*+ 1, the plane x+y=1, and the coordi-
nate planes.

21¢5. A solid is bounded by a hyperbolic paraboloid z=x"—g?
and the planes y=0, z=0, x=1. Compute ils volume.
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2196. A solid is bounded by the cylinder x* +2*=a* and the
planes y=0, 2=0, y=x. Compute its volume.
Find the volumas bounded by the following surfaces:

2197, az=y*, x* Ly =", 2=0,
2198. y=Vx, y=2Vx, x+2=6, 2=0.
2199. z=x"+ ¢, y=x*, y=1, 2=0,.

2200. x +y4-z=a, 3x+y=a, %.H—y:a, y=0, 2=0.

xr, 2 b
2201. E;,-l-gg—_-l, y=;x, y=0, 2 =0.
2202. x* +y'=2ax, z=0x, z=P0x (a>f).

In Problems 2203 to 2211 use polar and generalized polar
coordinales.

2203. Fmd the entire volume enclosed between the cylinder

x*+y*=a® and the hyperboloid x* +¢y*—2'=—a’.
2204. Find the entire volume contdmed between the cone
2(x* + ¢*)—2*=0 and the hyperboloid x* +y*—2'=—a’.

2205. Find the volume bounded by the suriaces 2az=x"+ y’,
Xy —2"=a*, z2=0.
2206. Determine the volume ol the ellipsoid

LaTE o

2207. Find the volume of a solid bounded by the paraboloid
2az = x* + y* and the sphere x* 4 y* 4 2 =3a®. (The volume lying
inside the paraboloid is meant.)

2208. Compule the volume of a solid bounded by t-he xy-plane,
the cylinder x* - y* =2ax, and tlie cone x*+ y*=2".

2209. Compule the volume of a solid bounded by the xy-plane,
the surface 2z=—ae- *"*4#9 and the cylinder x*+ y*= R".

2210. Compute the volume of a solid bounded by 1he xJ -plane,

the paraboloid z= 2—} b“ and the cylinder =+b=_2

2211. In what rdtlo does the hyperboloid x* +y*'—z -a’
divide the volume of {he sphere x* + y* + 2° < 3a°?

2212%, Find the volume of a solid bounded by the surfaces
2=x+y, xy=1, xy=2, y=x, y=2x 2=0x>0 y=>0).

Sec. 5. Computing the Areas of Surfaces

The area o of a smooth single-valued surface z=f(x, y), whose projection
on the xy-plane is the region S, is equal to

e[ [ VT () 5 e

9‘
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2213. Find the area of that part of the plane =+ %4 2=

which lies belween the coordinate planes.

2214, Find the area of that part of the surface of the cylin-
der x*4 y*=R" (z=0) which lies between the planes z=mx and
z=nx(m>n>0).

2215%. Compute the area of that part of the surface of the
cone x*—y'=2" which is situated in the first octant and is
bounded by the plane y--z=a.

2216. Compule the area of that part of the surface of the
cylinder x’—i~y’———ax which is cut out of it by the sphere
X'y 42t =a

2217. Compute the area of that part of the surface of the

sphere x*} y*+ 2*=a" cut out by the surface 24—‘;,—1

2218. Compute the area of that part of the surface of the
paraboloid y*®+ 2* =2ax which lies belween the cylinder y*=ax
and the plane x=a.

2219. Compute the area of that part of the surface of the
cylinder x*+4-y®= 2ax which lies between the xy-plane and the
cone x*-y*=2>

2220* Compute the area of that part of the surface ot the
cone x*—y' =2* which lies inside the cylinder x®-+ y*®= 2ax.

2221 %, Prove that the areas o[ 1he parts of the surfaces of the
paraboloids x* 4 y*=2az and x*—y*=2az cut out by the cylin-
der x*-+y*=R?* are of equivalent size.

2222%, A sphere of radius a is cut by two circular cylinders
whose base diameters are equal to the radius of the sphere and
which are tangent to each other along one of the diamelers of the
sphere. Find the volume and the area of the surface ol the re-
maining part of the sphere.

2223*% An opening with square base whose side is equal
lo a 1s cut out of a sphere of radius a. The axis of the opening
coincides with the diameter of the sphere. Find the area of the
surface of the sphere cut out by the opening.

2224*, Compuie the area of that part of the helicoid

z=carc tan% which lies in the first octant belween the cylin-
ders x*4-y*=a* and x*4 ¢* =02

Sec. 6. Applications of the Double Integral in Mechanics

1°. The mass and static moments of a lamina. [f § 1s a region in an
xy-plane occupred by a lamina, and o(x, y) s the surface density of the
lamina at the point (x, y), then {he mass M of the lamina and ils static
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moments My and My relative to the x- and y-axes are 'expressed by the
double integrals

M=S S e(x, y)dxdy, Mx=g Syg{x. y)dx dy,
(5) (S)
My=\ { xe (x, y) dx dy. (1)
(S)

If the lamina is homogeneous, then g (x, y)=const.

2°. The coordinates of the centre of gravity of a lamina. 1f C (x, g) is the
cenire of gravity of a lamina, then

- _ My —ﬁMx
=M Y me

where M is the mass of the lamina and Mg, M, are its static moments rela-

tive to the coordinate axes(see 1°). If the ‘lamina is homogeneous, then in
formulas (1) we can put p=1.

3°. The moments of inertia of a lamina. The moments of inertia ol a
lamina relative to the x- and y-axes are, respectively, equal to

=S Sy‘g (x, yydxdy, !y:—*S Sx“@(x, yydxdy. ()
(S) (S)

The moment of inertia of a lamina relative to the origin is

lo=-§ { (24900 pdedy=1x+1y. )
(5)

Putting ?(x y)—=1 in formulas (2) and (3), we get the geomeiric moments of
inertia of a plane figure.

2225, Find {he mass ol a circular lamina of radius R if the
density is proportional to the distance of a point from the centre
and is equal to 0 at the edge of the lamina.

2226. A lamina has the shape of a right triangle with legs
OB=a and OA =0, and its density at any point is equal to the
distance of the point from the leg OA. Find the stalic moments
of the lamina relative to the legs 04 and OB.

2227. Compute the coordinates of the centre of gravity of the
area OmAnO (Fig. 96), which is bounded by the curve y=sinx
and the straight line OA that passes through the coordinate origin

and the vertex A (% 1) of a sine curve.

2228, Find the coordinates of the centre of gravity of an area
bounded by the cardioid r=a(l + cos ¢).

2229. Find the coordinates of the centre of gravity of a cir-
cular sector of radius a with angle at the vertex 2a (Fig. 97).

2230, Compute the coordinates of the centre of gravity of an
area bounded by the parabolas #* =4x +-4 and y*=—2x 4.

2231. Compute the moment of inerlia of a triangle bounded
by the straight lines x+y=2, x=2, y=2 relative to the x-axis.
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929232. Find the moment of inertia of an annulus with diame-

ters d and D (d <<D): a) relative to its centre, and b) relative to
its diameter.

2233. Compute the moment of inerlia of a square with side a

relative to the axis passing through its verlex perpendicularly to
the plane of the square.

2234% CHrmpute the moment of inertia of a segment cut off

the parabola ¢ =ax by the straight line x=a relative to the
straight line y=—a.

Yf . Y‘
A(-g—,f)
o\

m

Fig. 96

2235%. Compute the moment of inertia of an area bounded by
the hyperbola xy=4 and the straight line x--y =25 relative to
the straight line x=y.

2236%, In a square lamina with side e, the density is propor-
tional to the dislance from one of its vertices. Compute the mo-
ment of inertia of the lamina relative to the side that passes
through this veriex.

2237. Find the moment of in>rtia of the cardioid r =a (1 4 cos ¢)
relative to the pole.

2238. Compute the moment of inertia of the area of the lem-
niscate r* =2a®cos2¢ relative to the axis perpendicular to its
plane 1n the pole.

2239*, Compule the moment of inertia of a homogeneous lamina
bounded by one arc of the cycloid x=a(f —sinf), y=a(l—cos¢)
and the x-axis, relative to the x-axis.

Sec. 7. Triple Integrals

1°, Triple integrals in rectangular coordinates. The friple integral of the

function f(x, y, ) extended over the region V is the limit of the corre-
sponding threefold iterated sum:

S S Sf{x, ¢, 2)dxdy dz =\im Ezzf(xf. Yp 25) Axp Ay, Az,
v Ik

max Ax; -0
max Ay 0
max Az —» 0
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Evaluation of a triple integral reduces to th2 successive computation of the

three ordinary (on2fold iterated) integrals or to the computation of one
double and one single integral.

Example 1. Compute

iuS § Sx‘y“zdxdydz.

where the region V is defined by the inequalities

0<x<<l, O<y<yx, O<<z=<Cuxy.
Solution. We have

1 4 Xif 1 X xy
L 2
I-——j‘dxs‘dgj x’y’zdz=j‘dxg‘x"y3% dy =
'] ;I .D L] ; 1]

1 X 1 X 1

_ xSyt B x5y _g‘ Al B 14

"Ed’“j_‘i‘d”“j'"i i =T
] 0 0 )] o

Example 2. Evaluate

S S S x2dxdy de,

()
s X R B
extended over the volume of the ellipsoid — +4- 3_3 ‘f‘CT:!'

Solution. & a
{3
S S S"z‘f“‘“z = S x* dx S 5 dy dz = S S, dx,
3 -a (5. “a

2 - 2
where S, 1s the area of the ellipse gri——i;i—_:l-—%z,x:const, and is equal lo

Fo a? x®
Sw—-—ﬂb 1/1*—;.3(3 -l/l—:‘—z::nbc(l—ﬁ).

We therefore finally get

(]

gl ‘x’ dx dydz = nbe S x’( 1—iz d‘c—i na*bc
. yaz= Ll A 1 -
o

—-d

2°, Change of variables in a triple integral. If in the triple inlegral

E S Sf(:c, y, 2)dxdyd:z
(W)

it is required to pass from ths variables x, y, 2 to the variables u, v, w,
which are connected with x, y. 2 bv the relations x=¢ (4, v, W), y=9 (4, v, W),
z=Y%(u, v, w), where the functions ¢, P, x are:

1) continuous together with their paitial first derivatives;

2) in one-to-one (1nd, 1n both directions, continuius) correspondence be-
tween the poirts of the region of integration V ol xyz-space and the pownts of
some region V' of UVW-space;



264 Mulliple and Line Integrals [Ch. 7

3) the functional determinant (Jacobian) of these functions

dx dx Ox
du dv Ow
_Dxy2) | oyody 9y
" D(u,v,w) | du dv dw
dz dz 0z
Jdu 0v ow

/

retains a constant sign in the region V, then we can make use of the for-
mula

S S S“x’ y, 2)dv dy dz =
13

=g S Sf[ff’ (w, v, w), $(u, v, @), ¥ (e, v, w)}[/|dudvdw.
(V)

Z z |
* nM(r,ﬁp,h) M(r,so,‘!f)
iy Z
h
Yy
0 —
?__ T A Y

- ¥

Fig. 98 Fig. 99

In particular,
1) for cylindrical coordinates r, @, & (Fig. 98), where

Xx=rcos @, y=rsineg, z=h,
we get [=r;
2) for spherical coordinates ¢, W, r(¢ is the longitude, 1 the latitude,
r the radius vector) (Fig. 99), where

Xx=rcospcosp, y=rcospsing, z=rsiny,

we have [==r%cos .
Example 3. Passing to spherical coordinates, compute

[ (S veTrTaarayas,
(W)

where V is a sphere of radius R.
Solution. For a sphere, the ranges of the spherical coordinates ¢ (longl-
tude), ¥ (latitude), and r (radius vector) will be

0< < 2m, —-%gtpg%, 0 r <R,
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We tlierefore have

L

an T R

]’f =M =T — — y

S“S}S x*y?|-22dx dy dz §d(p _Sﬂldlpug,r:costpdr R4
2

3°, Applications of triple integrals. The volume of a region of three-dimen-

sionual xyz-space is
V=S S S dxdy dz.
(1)
The rmuss of a solid occupying the region V is
M-"=S S S y (¥, y, 2) dx dy dz,
V)

where vy (x, y, 2) is the density ol the body al the point (x, y, 2).
The static moments of the body relative to the coordinate planes are

Myy = S S S y(x, y, 2)zdxdydz
Myz= S{VSJ‘ S y(x, vy, 2) xdxdydz;
Mzy = SHS,S ¥ (x, y, 2) ydxdy dz.

(V)
The coordinates of the centre of gravity are
— Myz — Mzxy — Myy
=M VTTM O FTTH

If the solid is homogeneous, then we can put y(x, y, z)=1 in the for-
mulas for the coordinates of the centre of gravity.
The moments of inertia relative to the coordinate axes are

e={{ { @+ v 0 9dxdydn
V)
ly={ § L @tenv i v ndedyas
(V)
;z:.S S g(x’+y’)v(x. y, z)dxdy da.
(V)
Putting y(x, g, 2)=1 in these formulas, we get the geometric momenis
of inertia of the body.
A. Evalualing triple integrals
Set up the limits of integration in the triple integral
S S S,‘(.t, y, 2)dxdydz

(V)
for the indicated regions V.
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2240. V is a tetrahedron bounded by the planes
x+y+2=1, x=0, y=0, z2=0.
2241, V is a cylinder bounded by the surfaces
21+ yt=R*, 2=0, z=H,
2242*%. V is a cone bounded by the surfaces

e y: g2

a2 T p=gr &=6

2243. V is a volume bounded by the surfaces
2=1—-x"—y', 2=0.

Compute the following integrals:

2244, deg dy ( d

V:+y+z+1'

]/-u -2
2 X 2

dx E dy S xdz.

2245.

2

S

l:'a V?ﬁ—xa Vuﬂ-f-:_y:
2246, gdx | dy 5 dz

|

p

Va—a@— g2 *

1=-X 1=X=y

2247. \ax { ay i xyzdz.

0

2248. Evaluate

0
'ggg drdydz
(x+y+2+1)°
vy

where V is {he region ol integration bounded by the coordinate
planes and the plane x+y+ 2=1.
2249. Evaluate

S SS(x+ y—+2)*dxdydz,

(V)

where V (lhe region of integration) is the common part of the
paraboloid 2as == x* + y* and the sphere X' 4 y*+2° < 3a’.
2250. Evaluale

S g g 2*dxdydz.

vy

where V (region of integration) is the common part of the
spheres x* +y' F22<R* and x*+4y" +2° < 2Rz
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2251. Evaluate
SSS 2dxdydz,
(¥)
where V is a volume bzoundgd b): the plane z=0 and the upper
half of the ellipsoid 2; 4 &+ =1.
2252. Evaluale
[ (o o
(V)

where V is the interior of the ellipsoid - -+

Vil 2* 1
a
2253. Evaluate

T

S S S zdxdydz,
(i)

where V (the region of integration) is bounded by the cone
z’:g-(x2 ') and {he plane z=A.
2254. Passing lo cylindrical coordinales, evaluate
Sggdxdydz,
(i)

where V is a region bounded by the surfaces x*+4y* 4 2°=2Rz,
x*-{ yf=2" and containing the point (0,0, R).
2255, Lvaluate

2 Vov- 23

Sd.\: 3 dyglzl/xz + y* dz,

0 u 9

first iransforming it to cylindrical coordinates.
2256. Lvaluate

2r V2 x=2a? Vari—ypiaga
S dx g dy S d21
< ~Virx=-xt 0

first fransforming it to cylindrical coordinates.
2257. Evaluale

R VRi-x# VRi-xi-p
S dx S dy S (x* +y*) dz,
SR

-VRI=m 0

first transforming it to spherical coordinates.
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2258. Passing to spherical coordinates, evaluate the integral

SSS V2t + 22 dxdy dz,

V)
where V is the interior of the sphere x*-l-y* --2* <<x.

B. Computing volumes by means of iriple integrals

2259. Use a triple integral to compute the volume of a solid
bounded by the surfaces

y'=4a’—3ax, y*'=ax, z=+h.

2260**, Compufe the volume of that part of the cylinder
x* 4 y* = 2ax which is contained between the paraboloid x* -- y* = 2az
and the xy-plane.

2261*, Compute the volume of a solid bounded by the sphere
x4+ 42" =a" and the cone 2*=x*+y° (external to the cone).

2262*, Compute the volume of a solid bounded by the sphere
x*+y*+2"*=4 and the paraboloid x"+y*=3z (internal to the
paraboloid).

2263. Compute the volume of a solid bounded by the xy-planc,
the cylinder x*+y*=ax and the sphere x* 4 y4* + 2° =4’ (internal
to the cylinder).

2264. Compute the volume of a solid bounded by the paraboloid

2 2
—i?-[--%; =2 7: and the plane x=a.

C. Applications of triple integrals
to mechanics and physics

2265. Find the mass M of a rec-
tangular parallelepiped 0 << x<Caq,
0<<y<bh, O0<z<<e, if the den-
sity at the point (x, y, 2) is
Q(x, Y, z)=x—]—y—|-z.

2266. Out of an octant of the
sphere x4y’ 2° <<, x=0,
Fig. 100 y=0, 2=0 cut a solid OABC
bounded by the coordinate planes

and the plane %+g=1 (a<<c, b <c¢) (Fig. 100). Find the mass
of this body if the density at each point (x, gy, ?2) is equal to
the z-coordinate of the point.

2267*. In a solid which has the shape of a hemisphere
Y+ +2'<<a’, 2=0, the density varies in proportion to the
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distance of the point from the centre. Find the centre of gravity
of the solid.

2268, Find the centre of gravity of a solid bounded by the
paraboloid y* 4+ 22* =4x and the plane x=2.

2269*. Find the moment of inertia of a circular cylinder,
whose altitude is & and the radius of the base is a, relative to
the axis which serves as the diameter of the base of the cylinder.

2270*, Find the moment of inertia of a circular cona
(altitude, h, radius of base, a, and density @) relative to
the diameter of the basc.

2271**. Find the force of attraction exerled by a homogeneous
cone of allitude A and vertex angle « (in axial cross-section) on
a material point containing unit mass and located at its vertex,

2272**, Show that the force of altraciion exerted by a homo-
geneous sphiere on an exlernal material point does not change if
the entire mass of the sphere is concentrated at its centre.

Sec. 8. Improper Integrals Dependent on a Parameter.
Improper Multiple Integrals

1°. Differentiation with respect to a parameter, In the case of certain
restrichions imposed on the functions [(x, @), [, (x, a) and on the correspond-
mg improper integrals we have the Letbmiz rule

dd_a S f(x, ) dx——-isv f‘; (x, a)dx.

il Uy

Example 1. By differentialing with respect to a parameter, evaluate

ui e—mx:___e—'gxi
5 = dy (¢>0, g >0).

(1]
Solution. Let

o
-nxy -3.:.1
Se xe dx=F (a, ).
Then 0

aF (a, )
oa.
a
Whenee F (o, p)=— ,L Ina4C (B). To find C(f), we put a=f in the latter
equation. We have 0_-——-—% In B4 C (B).

o0

=X —-axt
- S‘AE dx Que 2a.°

Whence C(ﬁ)ziinﬂ Hence,

F (a, ﬂ):——-—lncH- lnﬁ_7 _E.
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2°, Improper double and triple integrals.

a) An infilnite region. If a function f(x, y) is continuous in an unbounded
region S, then we put

(§7e pardy=tim ({7 x 9 dxay, M
o _’S(u;

(S)

where o is a finite region lying entirely within S, where o —+ S significs that
we expand the region o by an arbitrary law so that any point of § should
enter it and remain in it, If there is a limit on the right and if il does not
depend on ihe chosce of the region o, then the corresponding improper inte-
gral is called convergent, otherwise it is divergent.

Il the integrand f(x, §) is nonnegative [f(x, 4)=0], then for the con-
vergence of an nmrioper integral it 1s necetsary and sufficient for the limit

on the nghl of (1) lo exist at lcast for one system of regions o that exhaust
the region S.

b) A disconi{inuous function. If a function f(x, y) is everywhere contin-
uous in a bounded closed region S, except the point P (a, b), then we put

(071 pavay=tim ({10 g axan, @
(5) TS

where S, is a region obtained from § by eliminating a small region of dia
meter £ that contains the point P. If (2) has a limit that does not depend
on the tyre of small regions elimirated from S, the improper integral under
consideration is called convergent, othcrwise it is dvergent.

I f(x, )70, then the limit on the right of (2) is not dependent on the
type of rcgions eliminated Irom §; for instance, such reg;ons may be circles

of radius % with centre at P.

The concept of improper double integrals is readily extended to the casc
of triple mtegrals

Example 2. Test for convergence
dx _dxdy
A+ -2’
w3 U+ 4

where § is the entire xy-plane,

Solution. Let o be a circle of radius @ with centre at the coordinate
origin. Passing to polar coordinates for p % 1, we have

M Q

. dx dy i rdr
e Fé",S TE2 4?7 ".S B iy v
(4]

0
M
j ] [I+r’)"-”

dq’=]—'—' [(14 0*)'=P—1].

If p<1, then lim I (0)= lim I (0)= o and thec integral diverges. But if p > I,

g—=+35 o-pm'

then lim [ (0)=

=1 and the integral converges. For p=1 we have
Q@
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m Q
I (0)= Sd.'(pj‘ lrirrz=nln(l-|—g'); lim I(0)=w, that is, the integral
L]

Q>

1]
diverges.

Thus, " the integral (3) converges for p > 1.

2273. Find [’ (x), if
[(x) = S e~ dy (x > 0).

2274. Prove that the function

+ 0

. » .\'f ‘2}_
e

- I

satisfies the Laplace equation

d*u . u
a‘-; + ‘a}}-g _— 0-

2275. The Laplace transformation F (p) for the function f(¢)
is defined by the formula

F(p)={e=of (1) dt.

Find F(p), if: a) f(H)=1. b) [f(t)=e%, ¢) [(f)=sinpt;
d) f()=cospt.
2276. Taking advantage of the formula
Sx"“dx:-:l—(n > 0),

v

compute the integral

{ xr=1In x dx.

0

2277*. Using the formula

Se-ﬂ'dt=-:; (p>0),

evaluate the integral

[+ -]
S te—Pldt,
/]
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Applying diflerentiation with respect to a parameter, evaluate
the lollowing inlegrals:

e-'-‘lx

2278, — % dx (>0, B=>0).

2079. ("= sinmxdx (@>0, p>0).

g g °C—y8

arc tan ax
2280. g‘ W dx.

2281. j“'"“ “’dx(|al<1)

1]
2282. Se-mc S PY 1y (@=0).

Evaluate the following improper integrals:

=4

2283, °§ dx \ e-tsrody,
2284, gl dy!)i eﬁu dx.
0

2285. SS Ty I . where S is a region defined by the inequali-

ties x=1, fo

L]

22307 Sd"’fuﬂ o @>0)-

0

2287. The Euler-Poisson integral defined by the formula

o

I= S e~*dx may also be written in the form /= S e~¥*dy. Eval-

0 0

uate / by multiplying these formulas and then passing to polar
coordinates.

2288, Evaluate

dz
(424224 1)

ala=:8

dedy
0

78
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Test for convergence the improper double integrals:

2289**, Sglnl/x’-+-y’dxdy, where S is a circle x*+y* <1
(S

2290. SS{‘:’_:U,)“, where S is a region defined by the ine-

quality x* —| y* =1 (“exterior” of the circle).

dxd
2291%, S_Y‘V(X L )R’ where § is a square [x|<1, |y|<<]
(s

+5E

inequality x*—+y*-} 2* =1 (“exterior” of a sphere).

2292, ESS (x,dxdydz where V is a region defined by the
(1)

Sec. 9. Line Integrals
1°. Line integrals of the flrst type. Let f(x, y) be a continuous function

and y=¢ (x) [a<<v< b} be the equation of some smooth curve C.
Let us construct a system of points M, (v, 4,) (i=0, 1, 2, ..., n) that

break up the curve C inlo elementary arcs M,’;M ﬁAsl and let us form the
integral sum §, = Zf(z,, y,) As,. The hmit of this sum, when n - o and

max As; —+ 0, 1s called a line integral of the first iype

lim Z flx;, u;) As;= Sf(x, y) ds

— >
=1 F i

(ds 1s the arc differential) and is evaluated from the formula

b
Free was={ it g o) VTF @ 0F .
C u

In the case of parametric representation of the curve C: x=q(f),
y=y{) et <<P], we have

B
(i mas={r@m vopVem O+ @ar.
c

a

Also considered are line integrals of the first type of functions of three
variables f(x, y, 2z) taken along a space curve. These integrals are evaluated
in like fashion A line integral of the first type does not depend on the direc-
tion of the path of integrafion; if the integrand f is interpreted as a linear
density of the curve of integration €, then this integral represents the mass
of the curve C.
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Example 1. Evaluate the line integral

{ et as,
C

where C is the contour of the triangle ABO with vertices A (1, 0), B (0, 1),
and 0 (0, 0) {Fig 101).

Solution. Here, the equation AB is y=1—x, the equation 0B is x=0,
and the equation OA s y=0. We therefore have

(etnas= (utnds+ (wtpast (g as=

C AB BO 0A
1 1 1
=S V-Ed.r—l—g ydy—[—gxdx: V241,
0

0 o

2°. Line integrals of the second type. If P(x, y) and Q (x, y) are contin-
uvous functions and y=q (1) 1s a simooth curve C that runs from a to b as

Y
B
0 ——
A X
Fig. 101

x varies, then the corresponding line inlegral of the second type is expressed
as follows:

b

p%hmﬂ+QHJHw=SWUJMW+WUHHL¢MHM-
C a

In the more general case when the curve C is represented parametrically:
x=q(t), y=y (), where ¢ varies from a to §, we have

p

Smnma+mnm@+5wwm.wmwuwnwm.wmwumm
C (7}

Similar formulas hold for a line integral of the second type taken over a
space curve.

A line integral of the second type changes sign when the direction of the
path of inlegration s reversed. This integral may be interpreted mechanically

as the work ol an appropriate variable force {P (¥ y), Q(x, y)} along the
curve of integration C

Example 2. Evaluate the line integral

{y2ax+ 2 ay,
C
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where C is the upper hali of the ellipse x=a cosf, y==>b sint traversed
clockwise.

Solution. We have

L]
S y’dx+x’dy=g [6% sin? £ -( —a sin {) - a? cos> £ b cos {] df =
C n 0 0
= —ab® S. sin® ¢ dt +a’b5 cos® t dt =%- ab®,
T b

3°. The case of a total differential. If the inteosrand of a line integral
of the second type is a fotal differential of some single-valued function
U=U(x, y), that is, P (x, y)dx-+Q (x, y) dy =dU (x, y), then this line integral

is not dependent on the path of integration and we have the Newton-Leibniz
formula

(x1. 113)

P(x, y)dx+Q (x, y)dy=U (x,, y,)—U (x;, g (H
(X,. ¥,)

where (x,, 1) 1s the initial and (x,, y.) is the terminal point of the path
In particular, if the contour of integration C 1s closed, then

S P (x, y)dx-Q (x, y)dy =0 @)
C

If ) the contour of integration C is contained entirely within some
simplv-connected region S and 2) the functions P (v, y) and Q (x, y) tocether
with their partial derivatives of the first order are continuous in S, then a
necessary and sufficient coditior for the existence of the function U is the
identical fullilment (1n 8) of the equality

aQ aP
5%y (3)

(see integration of total differentials) If conditions one and two are not ful-
filled, the presence of condition (3) does not guarantee the existence of a
single-valued lunction U, and forinulas (1) and (2) may prove wrong (sce
Problem 23:2) We give a method of linding a function U(x, ) from ils
total diflereniial based on the use of line integrals (which is vet arother
method of integrating a lotal dilferential). For the contour of integration C
let us take a broken line PP M (Fie 102), where P, (x,, y,) is a fixed joint
and M (x, ) 1s a variable point. Then along P,P, we have y=y, and dy =0,
and along P,M we have dx=0 We get:

(x., )
U, )—U (5 v)= | Plx 9)dx+Qlx, n)dy=
(%, to) x v
=\ P(x, g ax+ | Qx. ) do.
Xo Vo

Similarly, integrating with respect to P, P,M, we have
y x
U =0t 0= Qi ) dy+§ P 5, p)d.

Vo Xy
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Example 3. (4x -4 2y) dx+ (2x—6y) dy=dU. Find U.
Solution. Let x,=0, y,=0. Then
n

X

U s, 9= 4x et @x—6p) dy+c=20 1 20y —352 4 C
0 0

or

1 X

Ulx, y)= S — 6y dy - S (4x+-2y) dx - C= —3y* + 2x* - 3xy - C,

0 0

where C=U (0, 0) is an arbitrary constant.

'}
Pz(fmy)
Y= — Mlz,y)

I

Yo r-m;@(x,ya)
z, T X

Fig. 102

4°, Green’s formula for a plane, If C is the boundary of a region S and

the functions P (x, y) and Q(x, y) are continuous together with their first-
order partial derivatives in the closed region S+-C, then Green’s formula holds:

?de+Qdy:§S$ (%%—95) ddy.,

here the circulation about the contour C is chosen so that the region S should
remain to the left,

5°, Applications of line integrals.”) An area bounded by the closed contour C is
S=—9§ydx=§xdy
c Cc

(the direction of circulation of the confour is chosen counterclockwise).
The o lowing formula for area is more convenient for application:

a_—.-;_.gS(xdy—ydx):—lz-‘fx’d (%) .
C

2) The work of a force, having projections X=X (x, y, 2), Y=Y (x, y, 2),
Z=12Z(x, y, 2) (or, accordingly, the work of a force field), along a path Cis
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expressed by the Integral

A:S Xdx+Y dy-+Zdz.
e
If the force has a potential, i.e., if there exists a function U=U (x, y, 2)
(a polential function or a force function) such that
oU oU QU
(7)'—):-:—".{ (}y = Y -(E e Z,
then the work, irrespective of the shape of the path C, is equal to
(%50 M2, 24) (X2 U3 2,)
A= S Xdx+Y dy-+2dz— ﬂ dU=U (xy . 20—U (%, 4, 2,),
(6 oy 7)) (x5, ;:h. 2,)

where (v, y,, 2,) is the nitial and (¥,, y,, z,) is the terminal peint of the path.

A. Line Integrals of the First Type

Evaluate the following line integrals:
2293. Sxy ds, where C is the contour of the square |x|+|y|=a
0

(@ >0).

2294, § o U~——_:, where C is a segment ol the straight line

connechng’ the points 0 (0, 0) and A (1, 2).
2295. S.Uds where € is a quarter of the ellipse £i+%5=1

lying in the first quadrant.
2296, SJ ds, where C is the first arc of the cycloid x =a (f —sin ?),
¢

y=a(l—cosl).

2297. SVx’-{—y’ ds, where C is an arc of the involute of the
¢
circle x==—-a(cost |-tsini), y=a(sint—fcost) |0t 2a],

2298, S(x‘-ry’)’ ds, where C is an arc of the logarithinic spi-
C
ral r==qae™® (m >0) irom the point A (0, @) to the point O (—o0, 0).

2299. S(x+y) ds, where C is the right-hand loop of the lem-
C

niscate r*=a’ cos 2¢.
2300. S(x l-y)ds, where C is an arc of the curve x=/,
&

3t2 3
—=, 2= 0<t<I].
Vg,z " ( t=1]
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2301. S FIATR —I— -, where C is the first turn of the screw-line
c

x=acost, y= asmt 2= bi.

2302. SV2y’ --2*ds, where C is the circle x*+y*+2*=a",
x=y. ’

2303*. Find the area of the lateral surface of the parabolic
cylinder y=:§-x' bounded by the planes z=0, x=0, z=x, y=©6.

2304 Find the arc length of the conic screw-line C x=ae' cost,

y=ae' sin{, z=ae' from the point O (0, 0, 0) to the point 4 (g, 0, a).
2305. Determine the mass of the contour of the elllpse

-%—2,—+—g;=l, if the linear density ol it at each point M (x, y) is
equal to |y].

2306. Find the mass of the first turn of the screw-line x =acos f,

y=asint, z=>50¢, il the densily at each point is equal to the
radius vector of this point.

2307. Determine the coordinates of the centre of gravity of
a half-arc of the cycloid

x=a(f—sint), y=a(l—cost) [0<{=n).

2308. Find the moment of inertia, about the z-axis, of the
first turn of the screw-line x=acosf, y=asinf, z=>50t.

2309. With what force will a mass M distribuled with uni-
form densily over the circle x* -} y*=a?*, z=0, act on a massm
localed at the point A (0, 0, b)?

B. Line [Integrals of the Second Type
Evaluate the following line integrals:

2310. S (x*—2xy) dx - (2xy - y*) dy, where AB is an arc of the
AB

parabola y=x* from the point A(l1, 1) to the point B (2, 4).

2311. S(Qa— yydx |-xdy, where C is an arc of the first

arch of lhe cyclmd

x=a(t—sint), y=a(l—cos{)
which arc runs in the direction of increasing parameter f.

2312. S 2xydx—x*dy taken along different paths emanating

OA
from the coordinate origin O (0, 0) and terminating at the point
A(2, 1) (Fig.-103):

a) the straight line OmA;
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b) the parabola OnA, the axis of symmetry of which is the
y-axis;

c) the parabola OpA, the axis of symmetry of which s the
X-axis;

d) the broken line OBA;

e) the broken line OCA.

2313. | 2xydx + x*dy as in Problem 2312.
0A

2314*. (x+ v)dx—(x—y) dy

P taken along the circle x* | y*=a®

counterclockwise.

Y

Cﬂw’ = A(2,1)

X
0 B(2,0)

Fig. 103

2315. { y*dx+x*dy, where C is the upper half of the ellipse
(
x==acost, y=>~bsint traced clockwise.

2316. g cosy dx—sin xdy taken along the segment AB of the
Al

bisectar of the second quadrantal angle, if the abscissa of the
point A is 2 and the ordinate of B 1s 2.

2317. ﬁ”"“";;}: df”, where C is the right-hand loop o1 the
lemmscate r* =a?cos2¢ traced counterclockwise.

2318. Evaluate the line inlegrals with respect to expressions.
which are total differentials:

(2, 3) (s, 4) {1, 1)
a) S xdy-+ ydx, b) S xdx+ydy, c) S (x+y) (dx +dy),
(-t 2) (0, 1} (o, 0)
(2, 1)

d) g ydx;xdy (along a path that does not intersect the

“:.”
x-axis),
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(%, ¥)
e) S dH dy (along a path that does not intersect the

(4
straight line x -}y =0),
(X3, U2)

D { e derv)dy.

(x4 1)

2319. Find the antiderivative functions of the integrands and
evaluate the integrals:

(3, 0)

a) S (x* +4xy®) dx -+ (6x'y*—5y*) dy,
(—2, ~1)
(1, 0)

b) S “ii;&fx (the integration path does not intersect the
{0, —1)

stralght lme Y =X),
S (x+2y)dx—|-ydy
(x+y)?
the stralght line y=—x),

9 S(V=+ 0 det (et £ )

(0, 0)
2320. Compute

(the integration path does not intersect

| = xdx—+ ydy
taken clockwise along the quarter of the ellipse ’;—:—[L!-;;z-:l that

lies in the first quadrant.

2321. Show that if f(u) is a continuous function and C is a
closed piecewise-smooth contour, then

gf(x=+y*) (x dx +y dy) =0.

2322. Find the antiderivative function U if;
a) du= (2x-+43y)dx + (3x—4y) dy;

b) du= (3x*—2xy + y*) dx — (x* —2xy + 3y*) dy;
¢) du=e*V[(1 4+ x4+ y)dx+ (1 —x—y)dy];

__ dx dy
d) du'—x+y+ar+u'




Sec 9] Line Integrals 281

Evaluate the line integrals taken along thé following space
curves:
2323. S(y——z)dx+(z—x)dy—|—(x——y)dz, where C is a turn

¢

of the screw-line J' X=acos{,
y=a sinf,
2 =bt,

corresponding to the variation of the parameter ¢ fromn 0 to 2.
2324. ‘QSydx -+2dy-xdz, where C is the circle
C

J X =R cosacost,
Y= Rcosa sin{,
l z=R sina (a=const),

traced in the direction of increasing parameter.

2325. Sxydx—}-yzciy~|—zxdz, where OA is an arc of tihe
o4
circle

Xy 4-2*=2Rx, z=1x,

situated on the side of the xz-plane where > 0.
2326. Evaluate the line integrals of the total differentials:

{8, 4, 8)

a) S xdx-Fydy—zde,
e
b) S yzdx-+zxdy-i- xydz,

(n, 1, 1)
(3, 4, 3)

C) Lﬂ -y dy -z dz
'/’-'\2 ,l.y! _*_ zi !
(0, o, 0)
1
(.t i, ;})
yzdx+zvdy - xydz
X[z

d) (the integration path is situated

f, 1, 1)

in the first octant).
C. Green's Formula

2327. Using Green’s formula, transform the line integral

[ =@V g dety[xy+In(x+ V£ g dy,
C

where the contour C bounds the region S.
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2328. Applying Green’s formula, evaluate
I=§ 20+ y) dx-t+ (x + 1) dy,
.

where C is the contour of a triangle (traced in the positive direc-

tion) with verlices at the poinls A(l, 1), B(2, 2) and C (I, 3).

Verify the resuli oblained by computing the integral directly.
2329. Applying Green’s formula, evaluale the inicgral

gg —x*ydx + xy® dy,
C

where C is the circle x* +¢* = R? traced counterclockwise.
2330. A parabola AmB, whose axis is the y-axis and whose
chord is AnB, is drawn through the points A (l, 0) and B (2, 3).

Find 55 (x +y)dx—(x—y)dy directly and by applying Green's
AmBnA
formula.

2331. Find S e™ [y*dx + (1 + xy)dy}, if the points A and B

AmB
lie on the x-axis, while the area, bounded by the integration
path AmB and the segment AB, is equal to S.

2332*. Evaluate Sﬁﬁi{;%’fﬁ'. Consider iwo cases:
¢ -T2

a) when the origin is outside the contour C,

b) when the conlour encircles the origin n times.
2333**, Show that if C is a closed curve, then

95 cos (X, n)ds=0,
&

where s is the arc length and n is the outer normal.
2334. Applying Green’s formula, find the value of the integral

I:SE [xcos (X, n)-fysin (X, n)]ds,
C

where ds is the differential of the arc and n is the outer normal to
the contour C.

2335*. Evaluate the integral

dx—dy
b
v Xty

taken along the contour of a square with vertices at the points

A(l,0). B(,1),C(—1, 0) and D(0, —1), provided the contour
is tracea counterclockwice.
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D. Applications of the Line I[ntegral

Evaluate the areas of figures bounded by the following curves:

2336. The ellipse x=acost, y= b sint.

2337. The astroid x=acos’{, y =asin’{.

2338. The cardioid x=a (2cos{--cos2!), y=a (2sint—
sin 2f).

2339*. A loop of the folium of Descartes x*+y*—32xy=0
(a>0).

2340. The curve (x-+y)'=axy.

2341*, A circle of radius r is rolling without sliding along a

fixed circle of radius R and outside it. Assuming that {f— is an

integer, find the area bounded by the curve (epicycloid) described
by some point of the moving circle. Analyze the particular case
of r=R (cardioid).

2342*. A circle of radius r is rolling without sliding along

a fixed circle of radius R and inside i1t. Assuming that RT is an

integer, find the area bounded by the curve (hypocycloid) de-
scribed by some point of the moving circle. Analyze the particular

case when r=% (astroid).

2343. A field is generaled by a force of constant magnitude F
in the positive x-direction Find the work that the tield does
when a malerial point traces clockwise a quarler of the circle
x*+y* =R* lying in the first quadrant.

2344. Find the work done by the force of gravity when
a material point of mass mis moved lrom position A (x,, y,, 2}
to position B(x,, y,, z,) (lhe z-axis is directed vertically up-
wards).

2345. Find the work done by an elastic force directed towards
the coordinate origin 1f the magnitude of the force is proportion-
al to the distance of the point fiom the origin and if the point
of application of the force traces counterclockwise a quarter of

the cllipse ‘;—n,-l—fi——-l lyinz in the first quadrant.

2346. Find the potential function of a force R{X, Y, Z}
and determine the work done by the force over a given path if:

a) X=0, Y=0 Z=—mg (lorce of gravity) and the mate-
rial point is moved from position A (x,, y,, 2,) to position
B(x,, ¥, 2,)

LX By 2
b) X=—Er—,~, Y=-—"%, Z=—";, where p=const and

r=Vx*+y*+2* (Newton attractive force) and the material point
moves from position A (a, b, ¢) to infinity;
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c) X=— k'x, Y=—Fk"y, Z=—FK*2, where k=const (elastic
force), and the initial point of the path is located on the sphere
£ +y*+2*=R?, while the terminal point is localed on the sphere
4yt 2=r*(R>r).

Sec. 10. Surface [ntegrals

1°. Surface integral of the first iype. Let f(x, y, z) be a continuous
function and z==q (x, y) a smooth surface S.
The surface integral of the [irst type is the limit of the integral sum

n
(1o ds=1im e v 2) A8,
n

- 0 =1
s t

where AS; is the area of the /th element of the surface S, the point (x;, g,,
z;) belongs to this element, and the maximum diameter of elements of par-
tition tends to zero.

The value of this integral is not dependent on the choice of side of the
surface S over which the integration is performed.

1f a projection o of the surface § on the xy-plane is single-valued, that
is, every straight line parallel to the z-axis intersects the surface S at only
one point, then the appropriate surface integral of the first type iay be
calculated from the formula

(1w aas={010 0 0w o Vit « o+, o dedy.
S (a)

Example 1. Compute the surface integral

{§ etutaas,

+

where S is thesurface of the cube D=y, Oy, O0<2< 1.
Let us compute the sum of the surface integrals over the upper edge of
the cube (z=1) and over the lower edge of the cube (z=10):

11

11 11
Qoo+ nardr+ (§ oy aeay=(§ @204 1 dray=s.
00 0o

00

The desired surface integral is obviously three times greater and equal to

SS (x+y+2)dS=9,
S

2°, Surface integral of the second type. If P=P(x, y, 2), Q=0Q (x, y, 2),
R =R (x, y, 2) are continuous functions and S+ is a side of the smooth sur-
face S characterized by the directionof the normal n {cosw, cos 3, cos y}, then
the corresponding surface tntegral of the second {ype is expressed as follows:

SSdedz—i—dedx—l—Rdxdy:gS (P cosa+ Qcos f+ R cos y) dS.
S+ 8
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When we pass to the other side, S™, of the surface, this integral re-
verses sign.

If the surface S is represented implicitly, F(x, y, 2)=0, then the direc-
tion cosines of the normal of this surface are determined from the formulas

,_Qf cosﬂ~-1—a—F cos ___l_dF
D ox ~Day Y= Da

o-s Y T T3+

and the choice of sign before the radical should be brought into agreement
with the side of the surface S.

3°. Stokes’ formula. If the functions P=P(v, y, 2), @=Q (x, y, 2),
R=R (x, y, 2) are continuously differentiable and C is a closed contour bound-
ing a two-sided surface S, we then have the Stokes' formula

ﬁpm+Q@+Rmz

C
3 R 0Q P OR\ 3Q oP
.._SS [(a—y——-a—z*)COSG-{-(‘B—;—(—}T) LOSB+(&;——'(—}?) COSY} dsS,
S

where cosa, cos §, cosy are the direction cosines of the normal to the sur-
face S, and the direction of the normal is defined so that on the side of the
normal the conlour § is traced counterclockwise (in a right-handed coordinate
sys tem).

Evaluate the [ollowing surface integrals of the first type:

2347. SS (x* 4 *)dS, where S is the sphere x* 4-4* +-2* =a’.

o

2348. SSVx’—E-y’ dS where S is the lateral surface of the
Y

Cosa =

wlhere

cone 3; - :’:—,——;; =0 [0<<2z=c 0L

Evaluate the following surface integrals of the second type:

2349, Sgyzdydz 4-xzdzdx - xydxdy, where S is the external
side of thg surface of a tetrahedron bounded by the planes x=0,
=0, e=0, x-}Ly-lz=ua.

2350. SSzdxdy, where S is the external side of the cllipsoid

xl yl SZE
=L

2351. SS xtdydz - y*dzdx 2 dxdy, where S is the external

s

side of the surface of the hemisphere x*' +¢* +2*=a* (2 = 0).
2352, Find the mass ot the surface of the cube 0 < x <1,

O<<y<l, 0<<2z<, if the surface density at the point M (x, y, 2)

Is equal to xyaz.
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2353. Determine the coordinates of the centre of gravity of a
homogeneous parabolic envelope az=x' + 4’ (0 <z<Cq).
2354. Find the moment of inertia of a part of the lateral

surface of the cone z=Vx* +y*[0 << z<<h] about the z-axis.
2355. Applying Stokes’ formula, transform the integrals:

a) 99 (¥' — y2) dx + (y* —2x) dy + (2 — xy) dz;
C
b) ggydxﬁ-zdy*}-xdz.
C
Applying Stokes’ formula, find the given integrals and verily
the results by direct calculations:
2356. ff(.y+ 2)dx +(z +x)dy + (x + y)dz, where C is the circle
c
L4yt 2t=a', x+y+4+2=0
2357. ﬁ(y—z) dx -+ (z—x)dy + (x—y) dz, where C is the ellipse
c
r4-yr=1, x4z=I.
2358, ﬁxdx—l—(x-l—y)dy—}—(x-i—y—f—z) dz, where C is the curve
c
x=asint, y=acost, z=a(sint4cos?)[0<?<2n].
2359. ff ydx+ 22dy-+x*dz, where ABCA is the contour of
ABCA

/A ABC with vertices A(a, 0, 0), B (0, a, 0), C(0, 0, a).
2360. In what case is the line integral

[=¢ Pdx+Qdy+Rdz
o

over any closed contour C equal to zero?

Sec. 11. The Ostrogradsky-Gauss Formula

If § isaclosed smooth surface bounding the volume V,and P =P (x, y, 2),
Q=0Q(x, y,2), R=R(x, y, z) are functions that are continuous together with

th-ir first partial derivatives in the closed region V, then we have the Osiro-
gradsky-Gauss formula

BS (Pcosa+ Qcosf+ Rcosy) dS=§SS (g; +g§ +g—f) dxdydz,
S (V)

where ¢rsa, cos B, cosy are the direction cosines of the outer normal to the
surface S

Applying the Ostrogradsky-Gauss formula, transform the fol-
lowing surface integrals over the closed surfaces S bounding the
\
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/olume V (cosa, cosP, cosy are direction cosines of the ouler
1ormal to the surface S).

2361. SS xydxdy +yzdydz-zxdzdx.
S

2362. SS x*dydz + y*dzdx + 2* dx dy.

S
9363. ﬂ"‘“““‘“’“‘f 2ty o
$

Vet ts
2364. SS (g; cos a +g—';— cos B + % cos y) ds.
S

Using the Ostrogradsky-Gauss formula, compute the following
surface integrals:

2063. SSx’dydz+y’dzdx-|—z’dxdy. where S is the external
s
side of the surface of the cube 0=x<<a, O0<<y<e, O0<z<a.

2366. ngciy dz+ydzdx--zdxdy, where S is the exlernal side

S
of a pyramid bounded by the surfaces x{-y+2z=a, x=0, y=0,
=0

2367, SSx’dydz—}-y‘dzdx:z“dxdy, where S is the cxternal
S
side of the sphere x*  y* 1-2* =@’
2368 SS (x*cosa - y*cosfP--2"cosy)dS, where S is the exter-

S
nal total suriace of the cone
52 e 2
S+5h—5m=0 [0<z<bl

2369. Prove that if S is a closed surface and [ is any fixed
direction, then

Sgcos (12, §) dS =0,

where n is the outer normal to the surface S.

2370. Prove that the volume of the solid V bounded by the
surface S is equal to

V=.;_S5 (xcosa -+ ycosp+zcosy)dS,
S

where cosc, cosf, cosy are the direction cosines of the outer
normal to the suriace S.
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Sec. 12. Fundamentals of Field Theory

1°. Scalar and vector flelds. A scalar field is defined by the scalar function
of the point u=f(P)=f(x, y, 2), where P(x, y, 2) is a point of space. The
?‘urliiaces f(x, y, 2)=C, where C=const, are called level surfaces of the scalar
ield.

A vector field is defined by the vector function of the point a=a(P)=
=a (r), where P is a point ol space and r=uxi+ yj-+zk is the radius vector
of the point P. In coordinate form, @ =a.d+4a,j+a,k, where a,==a,(x,y, 2),
ay=a, (x, ¥, 2), and a,=a, (x, y, z) are projettions of the vector @ on the
coordinate axes. The vecfor lines (force lines, flow lines) of a vector field are
found from the following system of differential equations

dx_dy_ds
ax a, a;’

A scalar or vector field that does not depend on the time f is called
stationary; if it depends on the time, it is called nonstationary.
2°, Gradient. The vector

ou , oU ., aU
grad U (P)=§; - g J+ 5 kR =\JU,

where V-—zi;-i—j%—l—kaaé is the Hamiltonian operator (del, or nabla), is

X
called the gradient of the field U=f (P) at the given point P (cl. Ch. VI, Sec. 6).
The gradient is in the direction of the normal n to the level surface at the
roint P and in the direction of increasing function U, and has length equal

to
oU o/ [oUNT  [aU\Z  [oU\*
7=V (&) +&) &)
If the direction is given by the unit vector Z {cosa, cos @, cosy}, then
w_ 3 o U U
a—i—zgradU-lhgrad,U_a-cosa-}-a?wsﬁ+5;cosy

L

(the derivative of the function U in the direction {).
3°. Divergence and rotation. Tge divergence of a vector field @ (P)=a,i |-
Tx

du da
._ i i p——] q-___y_ c—z-._: i
+a,j-tak is the scalar diva P +6y + 2 =\/a
The rotation (curl) of a vector field a(P):axi+ayj+azk is the vector

_ [ 94, ﬁ’) (a_a_‘i da, (aﬂy Oay \ .,
“’t“"(ay_az i+ 62"3}_)1'{_ ox 0y k=VXa.

4°, Flux of a vector. The flux of a vector field a (P) through a surface S
in a direction defined by the unit vector of the normal n {cosa, cos B, cos y}
to the surface § is the integral

SS an dS:SS a, dS= SS (ay cos o-|-a, cos f 4-a, cos y) dS.
S S S

If S is a closed surface bounding a volume V, and n is a unit vector of the
outer normal to the surface S, then the Ostrogradsky-Gauss formula holds,
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which in vector form is

a, dS = div a dx dy dz.
G nis= {1}

V)

5°. Circulation of a vector, the work of a fleld. The line nfegrai of the
vector @ along the curve C is defined by the formula

Sadr:Sasds=gaxdx+avdy+azdz (N
(4 C C

and represents the work done by the field a along the curve C (a; is the
projection of the vector a on the tangent to C).

If C is closed, then the line integral (1) is called the ctreulution of the
vector field a around the contour C.

1f the closed curve C bounds a two-sided surface S, then Stokes’ formula
holds, which in vector form has the form

§adr=§§nrotad&

[ S

where n is the vector of the normal to the surface S; the direction of the
vector should be chosen so that for an observer looking in the directionofn
the circulation of the contour C should be counterclockwise in a right-handed
coordinate system,

6°. Potential and solenoidal flelds. The veclor lield @ (r) is called poten-
tial if

a=grad U,

where U =f(r) is a scalar function (the polenital of the field).

For the polentiality of a field a, given in a simply-connected domain,
it is necessary and sufficient that it be nonrotational, that is, rota=0. In
that case there cxists a potential U defined by the equation

dU=a,dx+a,dy+a,dz.

If the polential U is a single-valued function, then S adr = U (B)—U (A);
AB

in particular, the circulation of the vector a is equal to zero:ﬁadr=l).

[
A vector field a(r) is called solenoidal if at each point of the field div
a=0; in this case the flux of the vector through any closed surface is zero.
If the field is at the same time potential and solenocidal, then div (grad U) =0
and the potential function U is harmonic; that is, it satisfies the Laplace
tion o4 s 28 0, or AU=0, where A=yr=2 4+ & 1. & o
equation 7= +ay' +6z’ =0, =0, where A=y *d.x‘+ay‘+az’ s the

Laplacian operator

2371. Determine the level surfaces of the scalar field U = (r),
where 7=V x* + y*4-2°. What will the level surfaces be of a field
U=F (g), where o=} x'+ y™?

101500
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2372. Determine the level surfaces ot the scalar field

U = arc sin

Vet

2373. Show that straight lines parallel to a vector ¢ are the
vector lines of a vector field @ (P)=¢, where ¢ is a constant
vector.

2374, Find the vector lines of the field @ = — oyi -+ wxj, where ©
is a constant.

2375. Derive the formulas:

a) grad (C,.U+C,V)=C,gradU+C,grad V, where C, and C,
arc constants;

b) grad (UV)=Ugrad V -+ V grad U;

c) grad (U*)=2U grad U, B

d) grad(—) Vgradb’vI gra V,

e) grad ¢ (U)=¢" (U)gradU.

2376. Find the magnitude and the direction of the gradient
of the field U=x'+y'+2’—3xyz at the point A (2, 1, 1). Deter-
mine at what points the gradient of the field is perpendicular to
the z-axis and at what points it is equal to zero.

2377. Evaluate grad U, if U is equal, respectively, to: a) r,

b) 'y ¢) =, d) [N (r=VZETg+ 2).
2378. Find the gradient of the scalar field U =¢r, where ¢ is

a constant vector. What will the level surfaces be of this field,
and what will their position be relative to the vector ¢?

2379. Find the derivative of the function U=Ei—+i§+§ at a

given point P (x, y, 2) in the direction of the radius vector r of
this point. 'In what case will this derivative be equal to the
magmtude of the gradient?

2380. Find the derivative of the function U=% in the di-

rection of /{cosa, cosP, cosy}. In what case will this derivative
be equal to zero?
2381. Derive the formulas:

a) div(C,a,+C,a,)=C,diva, +C,diva,, where C, and C, are
constants;

b) div(Uc)=gradU-¢, where ¢ is a constant vector;
¢c) div(Ua)=grad U-a+ Udiva.

2382. Evaluate div (;)

2383. Find div a for the central vector field a(P)_f(r)
where r =V x* + y* + 2%
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2384. Derive the formulas:

a) rot (C,a,+C,a,)=C, rota, +C, rot @,, where C, and C, are
constants; '

b) rot (Uc)=grad U-¢, where ¢ is a constant vector;

¢) rot (Ua)=grad U-a + U rot a.

2385. Evaluate the divergence and the rotation of the vector
@ il a is, respectively, equal to: a) r; b) r¢ and ¢) f(r) ¢, where ¢
is a constant vector.

2386. Find the divergence and rotation of the field of linear
velocities of the points of a solid rotating counterclockwise with
constant angular velocity o about the z-axis,

2387. Evaluate the rotation of a field of linear velocities
o=w-r of the pointsof a body rotating with constant angular
velocity @ about some axis passing through the coordinate origin.

2388. Evaluate the divergence and rotation of the gradient of
the scalar field U.

2389. Prove that div (rot a) =0.

2390. Using the Ostrogradsky-Gauss theorem, prove that the
flux of the vector @a=r through a closed surface bounding an
arbitrary volume v is equal to three {imes the volume.

2391. Find the flux of the vector # through the total surface
of the cylinder x*+y*<<R* O0<z<H.

2392. Find the flux of the vector a=x"1 4 ¢°j--2°k through:

a) the lateral surface of the cone %ﬁfs; ;;; O0<z=<H,; D) the
lotal surface of the cone.

2393*. Lvaluate the divergence and the flux of an attractive
mr

force F=-—=5 of a point of mass m, located at the coordinate
origin, through an arbitrary closed surface surrounding this point.

2394. Evaluate the line integral of a vector r around one
turn of the screw-line x=Rcos?; y=R sint, z=Hhf from (=0
to { =2m.

2395. Using Stokes’ theorem, evaluate the circulation of the
vector @ = x’y’i 4- j4- 2k along the circumference x* + y*=R?*, z=0,
taking the hemisphere 2=/ R*—x* — y* for the surface.

2396. Show that if a force F is central, that is, it is directed
towards a fixed point 0 and depends only on the distance r from
this point: F={(r)r, where f(r) is a single-valued continuous
function, then the field is a potential field. Find the potential U
of the field.

2397. Find the potential U of a gravitational field generated
by a material point of mass m located at the origin of coordi-

nates: az—;”-}r. Show that the potential U satisfies the Laplace
equation AU =0,

10*
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2398. Find out whether the given vector field has a potential U,
and find U if the potential exists:

a) a=(bx'y—4xy)i+ (3x'—2y) j;

b) a=yzi+ zxj+ xyk;

¢) a=(y+2)i+(x+2)j+(x+y) k.

2399. Prove that the central space field @=f(r)r will be so-
lenoidal only when f(r)=§—, where & is constant.

2400. Will the vector field a=r (¢ xr) be solenoidal (where ¢
15 a constant vector)?



Chapter VIII
SERIES

Sec. 1. Number Series

1°. Fundamental concepis. A number series

aD
QG+ ay+ ...t .= D 4, (1)

n=t
is called convergent il its partial sum

Sp=a+a,- ... +a,

has a finite limit as n — oo. The quantity S= lim S, is then called the sum
n—=m

of the series, while the number
Ry=8—Sp=aps1tapipot ...

is called the remainder of the series. If the limit lim §, does not exist (or Is

n—-o
infinite), the series is then called divergent.

If a series converges, then lim a,=0 (necessary condition for convergence).
n—>w

The converse is not true.

For convergence of the series (1) it is necessary and sufficient that for
any positive number e it be possible fo choose an N such that for n >N
and for any positive p the following inequality is fulfilled:

|@p+1+ et ‘+an+p1 <ée
(Cauchy's test).
The convergence or divergence of a series is not violated if we add or
subtract a finite number of its terms.
2°. Tesls of convergence and divergence of positive series.
a) Comparison test I. If 0<<a,<b, alter a certainn=n, and the scries

s -]
byt byt .. byt ... = Db, (2)
n=i

converges, then the series (1) also converges. If the series (1) diverges, then
(2) diverges as well.

it is convenient, for purposes of comparing series, to take a geomefric
progression:

" (@#0),
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which converges for |¢g| < 1 and diverges for |g|==1, and the harmon:ic series

w ]
2
n=1
which is a divergent series.
Example 1. The series

1 1 1 |
Tetegmtymt - +igmt...

converges, since here

while the geometric progression

A 1
whose ratio is g=-5 . converges.
Example 2. The series

In2 ., In3 Inn
Tt g s o ey

. ; ‘ Inn . :
diverges, since its general term — s greater than the corresponding term
1 s : ; ‘

o of the harmonic series (which diverges).

b) Comparison test II. If there exists a finite and nonzero limit lim 9

o+ x
(in particular, if a, ~ b,), then the series (I) and (2) converge or diverge at

the same time.
Example 3. The series

11 1
i R Rl =

aiverges, since
; ! | l
n—pm(?ﬂ-—l n) 2:":0'

. ;
whereas a series with general term "y diverges.
Example 4. The series

1 | 1 1
s tE—gte—gt - tgt+.
converges, since

: 1 1 : ! l
Jn (g )=t e gy

: ' ) |
while a series with general lerm gn converges.
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lc) D’Alembert’s test. Let a, >0 (after a certain n) and let there be
a limit :

n—-wo a4,

Then the series (1) converges if ¢ <1, and diverges if g > 1. Ii g=1, then
it is not known whether the series is convergent or not.
Example 5. Test the convergence of tle series

1 3 .5 2n—1
stEtat- Tt

Solution. Here,

2n—1 2n-+1
n= on A= on+1
and
1
n Lo~
lim k1 gy @r+D2" 1 2n_1
n—x U, ;1+m2n+1(2ﬂ—l) 2:1.—}0.11_1 2.
on

Hence, the given series converges.
d) Cauchy's test. Let a,=0 (after a certain n) and let there be a limif
lim Vg;zq_

= 0

Then (1) converges if g <1, and diverges if ¢ >1, When g=1, the question
of the convergence of the series remains open.

¢) Cauchy's integral test. If a,=f (n), where the function f(x) is positive,
monolonically decreasing and continuous for x=a =1, the series (1) and the
integral

°§ f (x) dx

converge or diverge at the same fime.
By means of the integral test it may be proved that the Dirichlet series

> @
n=1

converdes if p> 1, and diverges if p<<1. The convergence of a large number
of series may be tested by comparing with the corresponding Dirichlet
series (3)

Example 6. Test the following series for convergence

R i
etsatssT ta—pamt

Solution. We have
1 1 1 1

—_— eem————— ] e me—
aﬂ-

(2n—1)2n  4n? [T
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Since the Dirichlet series converges for p=2, it follows that on the basis of
comparison test 11 we can say that the given series likewise converges.
3°. Tests for convergence of alternating series. 1f a series

lagl+|ag)l+ ... +|agl+..., (4)

composed of the absolute values of the terms of the series (1), converges,
then (1) also converges and is called absolutely convergent. But if (1) con-
verges and (4) diverges, then the series (1) is called conditionally (not abso-
lutelg) convergent.

or investigating the absolute convergence of the series (1), we can make
use [for the series (4)] of the familiar convergence tests of positive series.
For instance, (1) converges absolutely if

<! o lim }/a,]<Ll.

H = o

Bty
aﬂ

lim
- w

In the general case, the divergence of (1) does not follow from the diver-
gence of (4). But if lim a_.;_"'_lf >1 or lim Vm:” 1, then not only does

n-® n n-w
(4) diverge but the series (1) does also.
Leibniz test I for the alternating series

b]_b:_l' bl"'" at e (b"l'_.‘-E:O) (5)
the following conditions are fulfilled: 1) b, =6,2=286,=>=...; 2) lim §,=0,

- a

then (5) converges.
In this case, for the remainder of the series R, thc evaluation

IR, =<,
holds. " .
Example 7. Test for convergence the series

(3 =3 b ()

Solution. Let us form a series of the absolute values of the terms of
this series:
YE 9N 3\ 4 \* n s
+(5) +(5) +(7) + )+

; 2 L 1 |
lim ]/( g ) — lim " lim L
n-w 2n—1 n-»w2n—I] ﬂ—rw2 | z°*

Since

n

the series converges absolutely,
Example 8. The series

11
1—-2-+§—-...+(—1)"+'-711-+

converges, since the conditions of the Leibniz test are fulfllled. This series
converges conditionally, since the series

1 1 1
l—|—§—|—§+...+;+...
diverges (harmonic series).
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Note. For the convergence of an alternating series it is not sufficient that
its general term should tend to zero. The Leibniz test only states that an
alternating series converges if the absolute value of its general term tends
to zero monotonically. Thus, for example, the series

l 1 1 1 1 1
|l ——t .. =t ..
5+2 5’+3 +k 5"+

diverges despite the fact that its general term tends to zero (here, of course,
the monotonic variation of the absolute value of the general term has been

violated). Indeed, here, S,k=S;+SL. where

: 1"t 11 |
Sk_1+5+73-+"'+_§" S _“(g'i't,}'-}-..-—!-gk) '
and lim Sl,:oo(S;a is a partial sum of the harmonic series), whereas the
k= »
limit lim S; exists and is finite (.S‘; is a partial sum of the convergent geo-
k= x

metric progression), hence, lim S,,= .

-»

On the other hand, the Leibniz test is not necessary for the convergence
of an alternating series: an alternating series may converge if the absolute
value of its general term tends to zero in nonmonotonic fashion

Thus, the series

1 l 1 1 1
l—gtE—agt - tmoyp @

converges (and it converges absolutely), although the Leibniz test is not ful-
filled: though the absolute value of the general term of the scries tends fo
zero, it does not do so monotonically.
4°, Series with complex terms A series with the general term ¢,=a, 4
a

- 1by(i*=—1) converges if, and only if, the series with real terms E ay
n=1

X
and zb,, converge at the same time; in this case

n=i
doen= Y a1y, b (6)
n=t =1 =1

The series (6) definitely converges and is called absolufely convergent, if the
series

[ ] (* 2]

PACAED A AT

n=s: n=i

whose terms are the moduli of the terms of the series (6), converges.
5°. Operations on series.

a) A convergent series may be multiplied ternwise by any number k;
that s, il

dy+at .. Fa,+... =8,
then
*  kayt{-kag+ ...t hap+ ... =RS.
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b) By the sum (difference) of two convergent series

al+az+”-+an+-“=sh (7)
B b, ot o =8 8)

we mean a series

(@y £ b))+ (@, £ b))+ ...+ (a, £ b,)4-... =8, £ S,.
c) The product of the series (7) and (8) is the series
/A 7 T (9)
where c,=a,bp+a.b, 4 ... taub(n=1, 2, ...).
if th

e series (7) "and (8) converge absolutely then the series (9) also con-
verges absolutely and has a sum equal to §,S,.
d) If a series converges absolutely, its sum remains unchanged when the
terms of the series are rearranged. This property is absent if the series con-
verges conditionally.

Write the simplest formula of the nth term of the series using
the indicated lerms:

2401, 14+ 414424 2«m.1+%u+i47%+.

3
2%2-§+gwq?+g+u“ 2%&-I+ +wb+%+

2%&1+%+%+%+.” M%.§+ +ﬁ+ﬁ+”.

llll‘ll
mm.ﬁuh+ﬁ+ﬁT%+ﬁ+“.

1-3-5 3-5.7
2408. 1_I—] 4+] 4’?+1 4?10+"'

2409. 1 —1 4+ 1—141—=14...
2410 14243 4+ 5tz £

In Problems 2411-2415 it is required to write the first 4 or
o terms of the series on the basis of the known general term a,.

24]' an=%?_*_ag. 24!4 a ""'[3_'_—(1”‘"—1".
2412. (—;)nn. (2-{-5111%")(:05 n
2418 a, _24¢=l)* 2415. a,= =

n?

Test the following series for convergence by applying the com-
parison tests (or the necessary condition):

2416, 1—1+1—14...+(=1)""+.
it 343 (3) 4 (3) + oot (B) e
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9 3 4 P
TSP R N BN L
. V'fﬁ ;‘/Tﬁ 77T oot e
B st ot e
2421, 'ﬁ'—f_ﬁ—l_ﬁ_;_ "'+_1_(Jr1+l S o
l 1 ] |
2422, —— — —— e F e
Vl2+|/2 3+ V3-4+ J Vg0 |
= ’ 2"
2423. 2 ]~ J— s s Fpom o
1 1 |
2424, | f——=-4+——+ ... F—4 ...
7 *V3+' + ot
. | 1
2425. T 2+82 -+ . m"F...

3 g
246, Ly V2 V/S b
273y 41/3 (n 1) Vn

Using d’Alembert’s test, {est the followings scries for conver-
gence;

3 ) 2n— 1|
2427, —= L5+ —F=F vonFrmmm F
e 2.5.8 2:5.8...(8n—=1)
2428. -+ ] G 5 i i59F """'1-5-9...(4;;.-3? I eee
Test for convergence, using Cauchy’s tesl:

; 2 3\? 4\? n--1\"
o 24(1 (5] 0 ()
' ] gAs 3\ n 2n-)
2630 3 +(5) +(g) + o Hmm) o
Tesl for convergence the positive series:

2431, Lgrtgrt oot

1 | 1 | :
2432. 'g“l"‘g“"{“l_g"[“ oo w “!—W:—iﬂ— .

. l 1 1 1
2433- m-l_ﬁi_'?r{_m_i_ .. -I_(J!I"—2) (3n_i' l) _I—---

I 4 9 n?
2434, 3+ttt

s 1,23 L
2435. 2"’5+m+'“‘1‘n=+1 e

3 5 7 2n 41
26, rmtpEptaEmnt - -t aFraF T

mnl
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3 [6\* [0\ 3n \n
2437. 3+(7) +(g) + -+ () +---
1 3 n
3\r 5 7\* 2n+41\2
2438. (-4- +"7‘+(m) ¥ ”+(3n+l) B s
2480, & 45 45t
-';'+¢z+;'+ L) en+---
2 4 gn=1
2440- l+'2?+3a+ + n® .
nl
2441. 2+1+2'+1+2'+1+ ctgrptees
2, 4 gn=1
2442, l+ﬁ+§f+ +(n—1)1+
1 1.3.5 4 135 (2n-—-—l)
2443 T+4“'§ 4.8. 12+ 4.8.12.. + .
2444, ‘””+‘2”’+‘3” - +{;;’),+...
1000- 1002- 1004. . . (998 + 2n)
.+ -4.7...0n—9) LRED
2.5.8 2.5.8. .. (61 —7) (6n—14)
2446. 1+159+ +l-5-9...(8n—11)(8n_7)+"'
.5 (4!1—.5)
2447. ?"‘245’*‘ +246 —4) (dn— 2)+"'
(<11 | I 11 91 1 11.21...(10n —9)
2448, 34 5+ S L R (D
.4 1.4.9 1-4-9.,
2449, 1+t 35791 - TiEsT0 (4n—-—d) T
< o < 1
2450, rlZarc sin ﬁ 2455. Enlnn
=1 f1=2
2451. 3 sin ;. 2456. Y 1
n=1 n=i
< 1 c I
2459, ;ln(l—}—;{). | 2457. z_:n.m.lnlnn.
<. ntl < |
2453, ,;ln . 2458. én,__ﬂ
< | w‘\ i
2454. > —., 2459. Y

Vat+D)

=

I
»
=
]
L
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2460.

2461.

2462.

2463.

2464.

2469.

,;2:1 Va (ﬂ+l1)(n+2)' 2465. ;E—l

Eninn.:]/‘m' 2466. Eﬁzf;'
Z_:n /nl— Vn® 2467. iﬂnn
g 2n—1)l(g:l/n—-1) 2468°. nl;.e,l
Z(1-en2)

rel

Prove that the series L ,,lnqn

1) converges for arbitrary q, tf p>1, and for ¢>1, if p=1;

2) diverges for arbitrary g, if p<<]l,

and for g1, if p=1.

Test for convergence the following alternating series. For con-
vergent series, test for absolute and conditional convergenee.

o0 L—pbn— it

2471. 1——715 ska +‘_]'}: sl i

2472, 1—--4—+§— +(_”"”'+...

73 1—E g — . A

2474. %—-2_—3-;-371— b (T L

2475. __‘g_§+.%+%_ .+(—|)T-%+...

AL~ Vg'-1+3 V‘g‘——l_q V:'—1+ et

L m+1}";r:_+l'-1 '

2477. —5+(3) —(5) + -+ + (=0 ()"

2478. S — 2t ggg— - F (=D et )y

2479. _':'"_Tl(:ghl_?l-;-l?l ""'(_l)n—'?l;fi {(gln:-25))+



302 Series [Ch. 8

sin a sin 2a sin na
2480. 1n10+(1n10)ﬂ+ S T LAt
L ,,Inn _ qyn=t
2481, ,;( 1) 2482. }_‘( 1) tannl/.n

2483. Convince yourse]f that the d’ Alembert test for conver-
gence does not decide the question of the convergence of the

series ia", where

= 9k—1 ok—=1
zk—1=5'k'271 a=k='"§f,—
whereas by means of the Cauchy test it is possible to establish
that this series converges.

2484*. Convince yourself that the Leibniz test cannot be
applied to the alternating series a) to d). Find out which of
these series diverge, which converge conditionally and which con-
verge absolutely:

a k=1, 2,...),

1 1 1 1

1 |
a) Vim1 Vil Vici Vil Vim vigito

___ — 1 .
(azk-l_Vk__+l—l' Ay V—JIB_——E-I-{—])’
| | 1 | |
b l=gt+tg—gste—5+
| 1
(a2k—l = 2,-;;_..,'- App=— 32k—:) '
1,1 1,1 1
) |=gtg—gtg—ut
1 |
(azk—1 2% 1 ’ sk~ 5}) '
1 11,1 1
) g—lt7—5+g—g+
1 i
(azk 1T Ak —1 azkz—_m)'
Test the following series w1th complex terms for convergence:
S (2 o i
9485, 2 e 92488. 2?.
2486, 3 nG—D" 2489.
Z 3 ,IZ,‘ l/n—I—I

2487, E:W 2490. Z(n+z)|f‘
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o i [ n@—i)+11"
2491, E;[nﬂzn——l)fl" 2492, E Pk
2493. Between the curves y=£,— and y=;:—, and to the right

of their point of intersection are constructed segments parallel

to the y-axis at an equal distance from each other. Will the sum
of the lengths of these segments be finite?

2494, Will the sum of the lengths of the segments mentioned
in Problem 2493 be finile if the curve yz-l- is replaced by the

x!

curve y=% ?

2495. Form the sum of the series Elé—};f and E(__I:)}:j.
n=1

Does this sum converge?

2496. Form the difference of the divergent series 22“_]

and 22’7 and test it for convergence.

=]

2497, Does the <eries formed by subtracting the series

-4

I
2 E'__ ?
5;—7 irom tihe series converge:

n=1 n=j

2498. Choose two series such that their sum converges while
iheir difference diverges.

2499. Form the product of the series E VT and 2—2—,,1:—
n n

=1

Does this product converge?

2500. Form the series (l -|——;_,—+%+ —f-2-71_—;+ )’ Does
this series converge?

2501. Given the series | 'I'?:T_%i“i" .o i +(—#+ ... Estimate

the error commitied when replacing the sum of this series with
the sum of the first four terms, the sum of the first five terms.
What can you say about the signs of these errors?

2502*. Estimate the error due to replacing the sum of the

series 1 ’ o
st (x) +3(g) + o Falz) +.

by the sum of its first n terms.
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2503. Estimate the error due to replacing the sum of the
series

1 1
bt gt o F ot
by the sum of its first n terms. In partlcular, estimate the accu-
racy of such an approximation for n=10.

2504**, Estimate the error due to replacing the sum of the
series

T L -

by the sum of its first n terms. In parlicular, estimate the accu-
racy of such an approximation for n=1,000.
2505**, Estimate the error due to replacing the sum of the

ceries
1+2(%)'+ 3(%)4+ o (—})’"_’+...

by the sum of ifs first n lerms.

25606. How many terms of the series E(_"ln)"-l

n=1
to take {o compute its sum to two decimal places? 1o three
decimals?

does one have

2507. How many terms of the series 2 does one

n
(2n+1)5"
have to take to compute its sum to two dec1mal places? to three?
to four?

: . 1 1 1
2508*. Find the sum of the series m—[—m+m+...+

1
+u(n+l)'+

2509. Find the sum of the series

Vit (V/x—V )+ (Vx— Y )+ ... + Y= x) + ...

Sec. 2. Functional Series

1°. Region of convergence. The set of values of the argument x for which

the functional series
hA+hH®+. @)+, (1
converges is called the region of convergence of this series, The function

S (x)= lim S, (x),
-
where S, (:c)—f,t D+ () + ... +fnlx), and x belongs to the region of con-

vergence, is called the sum of the series; R, (x)=S (x)—S, (x) is the remainder
of the series.



Sec. 2) Functional Series 305

In the simplest cases, it is sufficient, when determining the region of

convergence of a series (1), to apply to this series certain convergence tests,
holding x constant.

Diverges , [Lonverges Diverges
-——-—————Tllddﬁédcﬁléééfééﬂé——
-J -1 0 1
Fio. 104

Example 1. Determine the region of convergence of the series

41, (x4 (1) (x+ 1)
].2+ 9.92 + 3.98 +aen n.9n e e (2)

Solution. Denoting by u, the general term of the series, we will have

lim | un+1I= lim [24-1]7+12%n =Ix+1|

nsw |Uyl nsw 2" (n+1) [ x|? 2
Using d'Alembert’s test, we can assert that the series converges (and converges
absolutely), if l—'-x—_;—uc: 1, that is, if —3 <x<1: the series diverges, if

|x+1]
2

> 1, that is, i —eo <x<—3 or 1<x< e (Fig. 104). When x=1

we get the harmonic series l—l—%-]— %-{- ..., which diverges, and whenx= —3

we have the series —l+%—-1§+.... which (in accord with the Leibniz

test) converges (conditionally),
Thus, the series converges when —3<<x < 1.
2°. Power series. For any power series

Co-f-6y (a—a)+cy(x—a)i ..., (x—a)?+. .. (3)

(¢, and a are real numbers) there exists an interval (the inferval of conver-
gence) | x—a| < R with centre at the point x=a, with in which the series (3)
converges absolutely; for | x~a| > R the series diverges. In special cases, the
radius of convergence R may also be equal to 0 and . At the end-points of
the interval of convergence x==a + R, the power series may either converge
or diverge. The interval of convergence is ordinarily determined with the
help of the d’Alembert or Cauchy tests, by applying them to a series, the
terms of which are the absolute values of the terms of the given series (3).
Applying to the series of absolute values

leo| +le [l x—al+...+lczl | x—al®+...

the convergence tests of d’Alembert and Cauchy, we get, respectively, for the
radius of convergence of the power series (3), the formulas

Cn

R and R= lim

1
 lim e, | n o

n->»awm

Cn+1

However, one must be very careful in using them because the limits on the
right frequently do not exist. For example, if an infinitude of coefficients ¢,
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vanishes [as a particular instance, this occurs if the series contains terms
with only even or only odd powers of (x—a)], one cannot use these formulas.
[t is then advisable, when determining the inlerval of convergence, to apply
the d’Alembert or Cauchy tests directly, as was done when we investigated
1he series (2), without resorting to general formulas for the radius of con-
vergernce,

If z=x-41y is a complex variable, then for the power series

Cot ey (2—2) 63 (2—2) + oo ey (2—20)" F ... 4

{c,=a,-+ib,, z,=x,- iy,) there exists a certain circle (circle of convergence)
lz—2z,| <R with centre at the point z=2z,, inside which the series converges
absolutely; for |z—z,| > R the series diverges. At points lying on the cir-
cumference of the circle of convergence, the series (4) may both converge and
diverge. It is customary to determine the circle of convergence by means of
the d’Alembert or Cauchy tests applied to the scries

lealFle sl z2—2y 1|l 2—2 P+ .. Flepl-1 2—24 "+ .. .,

whose terms are absolute values of the terms of the given series. Thus, for
example, by means of the d'Alembert test it is easy to see that the circle of
convergence of the series

241 (2417 (2417 (z4 1"
o T g tgp Tt e

is determined by the inequality |z41| <2 [it is sulficient to repeat the cal-
culations carried out on page 305 which served {o determine the interval of
convergence of the series (2), only here x is replaced by 2z]. The centre of
the circle of convergence lies at the point z= —1, while the radius R of this
circle (the radius of convergence) is equal to 2.

3°. Uniform convergence. The functional series (1) converges uniformmly on
some interval if, no matter what & >0, it is possible to find an N such that
does not depend on x and that when n> N for all x of the given interval
we have the inequality |R,(x)| <e, where R, (x) is the remainder of the
given series.

Il o) |<c, (n=1, 2, ...) when a<<y<<b and the number series

- a}

E ¢, converges, then the functional series (1) converges on ihe interval

n=i
la, &' absolutely and uniformly (Weierstrass’ test).

The power series (3) converges absolutely and uniformly on any interval
lying within its interval of convergence. The power series (3) may be term-
wise differentiated and integrated within its interval of convergence (for
| x—a| < R); that is, if

Gt (x—a) ey (x—a)~+ ...+ ¢, (x—a)"+ ... =f(x), ()
then for any x of the interval of convergence of the series (3), we have
e+ 2, (x—a)+4 ...+ nc, (x—a)* " ... =" (x), (6)

x X X

S codx 4 §c, (x—a)dx -+ S Cy(x—a)dx+...-+ S Cp(x—a)ytde+...=
X, Xy

Xo >

o, ™ gyttt
-—-Zf‘n_ f!-l-—l —Sf(x)dx (7)
n=0 Xy
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[the number x, also belongs to the interval of convergence of the series (3)].
Here, the series (6) and (7) have the same interval of convergence as the

series (3).

Find the region of convergence of the series:

2510. 3, .
2511, 3 (—1)"** =,
2512. ¥ (—1)n+' L_

sin (2n—1) x
2618. Y, =

2514, 3 2"sin 3; .

n=a
x
T CNS N
2515%*. >~
n=i
2516. > (— )"+ e-nsine,
H=0
1’- nl

2517.

=1

-
nln x

2519.

2520.

25621.

2522.

2523.

nlx™°
=1

|
Z2n—1)yx""*

M s

n=i

[\‘

(x____Q)H .

Hn=1

2n+1
;:-l (n -1 1) X2

i gy
n-3" (x— B)n *
n=i

w

Find the interval of convergence of the power series and test
the convergence at the end-poinis of the interval of convergence:

2526. > x
n=a

2527, 3 A

n.2mn"°
2 -1
pre
2528. "2_:1 i »

2n—:x:u—l
An—3) °*
dd (4n—3)

2529.

(__])n-l xn

2530.

2531.

2532.

25633.

2634.

2535.

L(n 1) 420
2n4-1 °

5_‘_ (— D" @n 41

=0

fi=1
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s =\ = -1
2536. 3. (5:2)  # 2551. if—j‘f;—
n=1 n=1
= 1.n3 [x__g)ﬂ
2537. E&xﬂ. 2652. 2. g7
2538. 3 11 (5) - 2553, 3 (— )"
° J {Qn—l)”'(x-—l}"
2530. > "X X =
n=1
l (x+ 3)"
® 2554, » TV
2540. Y 2 g‘ %
s S %
2541, Y xn! 2095, g LERlaliad
n=i w
x 2556, 3  G—I7
2542+%. 3" nl x1l, 2 GEOWGTT)
© 2557. 3 (— 1)+t
2543%, " s z:“.
n=i X (1—2)‘"
L Dl 1)
tte. 32 G DG
net 558, 3 WD
2545. Z( yr-r &30 s
n-3 1 na
= 2559 2(1+;) (x— 1),
2546. ‘—"%}— "
n=j (2” l}" {x+ l)n
- 2560, }_‘ S
2547, 3, ") e
n=s 561, Y (— 1) '/n'_‘ljgx
2548, Y, (— 1yt A2 —
n=1 2n ( _2) ¢
~ (x43)" - (3n—2) (x—3)"
2549: — ﬂ.’ . 2562- (ﬂ+l)= 2u+1
=1 nt=e
2550. " n” (x -+ 3)". 2563, ¥ (—1)y" ="
,,Z;“, ) nzﬂ( )¢2n+mfu+1.
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Determine the circle of convergence:

2564. 3 i"z". 2566. Y =20
n=o n=1

~ - g
2565. nz;o“ rniyzr. 2567, nZ‘T

2568, (1+20)+(1+2) (B +2)z+ ...+
+(14+2)B +20)...@nL142)2" ...

2 ¥4
2569. |+ -2 + =gt -
zﬂ
Ry gy o w e S
N f14-20i\" _,
2570. o(nwf)

2571. Proceeding from the definition of uniform convergence,
prove that the series

l4+x4+x24+...4+x" ...

does not converge uniformly in the interval (—1, 1), but con-
verges uniformly on any subinterval within this interval.

Solution. Using the formula for the sum of a geometric progression, we
get, for |x| <1, .
X

R,(x) ="+ 4 x4y —

—x

Within the interval (—1, 1) let us take a subinterval [—1+a, 1 —a], where

a is an arbitrarily small positive number. In this subinterval |x|<<1—a,
| l—x|=a and, consequently,

(1 —a)"+!

IR, () | < *——.

o

To prove the uniform convergence of the given series over the subinterval
[—14a, 1—a], it must be shown that for any e > 0 it is possible to choose
an N dependent only on & such that for any n > N we will have the ine

quality [R,(x)| <e for all x of the subintervallut:ndcr consideration,
Taking any >0, let us require that (1—_5-)——<3; whence (1 —a)?t'<ea,

In (ea)

(n+41)In(l—a) <In(ea), that is, n+41 >—-1n(1——a) [since In(1—a) < 0] and
1n (ea) . _ In (ea) _ .
n(l—a) —1. Thus, putting N_ln(l—u) 1, we are convinced that

when n> N, |R,(x)| is indeed less than e for all x of the subinterval
[—=14a, 1—a] and the uniform convergence of the given series on any sub-
interval within the interval (—1, 1) is thus proved.

As for the entire interval (—1, 1), itnf?ntains points that are arbitrarily

. X :
close to x=1, and since lim R, (x)=lim "——= o0, no matte: how large n is,
X1 x—=1 1—X
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points x will be found for which R, (x) is greater than any arbitrarily large
number Hence, it is impossible to choose an N such that for n > N we
would have the inequality |R, (x)| <& at all points of the interval (—1, 1),
and this means that the convergence of the series in the interval (—1, 1)
is not uniform.

2572. Using the definition of uniform convergence, prove that:
a) the series

xﬂ
Tl

X >
1+T!+§+""| A=
converges uniformly in any finite interval;

b) the series . 1
A {____l)ﬂ- x:n
e i e A= ALY

converges uniformly throughout the interval of convergence
c) the series

Ibgetget o+t

converges uniformly in the inferval (14-8, o0) where & is any
positive number;
d) the series

(' — )+ (=2 (e —x®) (=)

converges not only within the interval (—1, 1), but at the extre-
mities of this interval, however the convergence of the series in
(—1, 1) is nonuniform.

Prove the uniform convergence of the functional series in the
indicaled inlervals:

2573. Z%; on the interval [—1, 1].
2574. E%,?f over the entire number scale.

ft=1

2575. 2(—1)"-'% on the interval [0, 1].

n=1i

Applying termwise differentiation and integration, find the
sums of the series:

PBT0 T B e s E e
oy MRS R S |

n
x-.ﬂ-.'l

2578. x+%+%+.. tg—it..
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x!ﬂ—i

X X i

2579. x—'—-:;-—}-'g—'.—i—(—]) lm-’-.
2580, 1 -L-2x+38+ ...+ (n+Dx"+ ...
2581. 1—3x*< bt —. ..+ (=1)"""2n—1) """+ ...
2582, 1:242:3x4+-3-4x* + ... 4n(n+Dx"""4...
Find the sums of the series:

1 2 3 n
2583. T+I§+?’+ . .—I—;—,,-}- ces

] x-ﬂl—!

o157 AR Ik ok MR . et

& ] _1_ _]._ (=H""!
BB l—g Frmrrimt - Tt e

1 3 5 2n—1
2586. ?+§+§,~+.. .—}—“;2—,,——]—.. ;

Sec. 3. Taylor’s Series

1°. Expanding a function in a power series. If a function f(x) can be
expanded, in some neighbourhood |x—a| < R of the point a, in a series of
powers of x—a, then this series (called Taylor's series) is of the form
(F
fw=f@+F@e—a+E0 e—ap .+ E@ oy gy

ni

When a=0 the Taylor scries is also called a Maclaurin’s series. Equation (1)
holds if when [x—a| < R the remainder term (or simply remainder) of the
Taylor series

1] lk.'
Ry =1 = 1@ 3 L@ =] —0
k=1

as n— o,
To evaluate the remainder, one can make use of the formula
__ =" ;
R (xy== TERDY f (@40 (x—a)], where 0 <0 <1 (2)

(Lagrange’s form).
Example 1, Expand the function f(x) = coshx in a series of powers of x.
Solution. We find the derivatives of the given function f(x)=coshzy,
f' (x)=sinhx, j'(x)==coshx, f'"(x)=sinhx, ...; gencrally, [™ (x)=coshyx,
if n is even, and f' (x)=sinhx, if n 15 odd. Putting a=0, we get [ (0)=1,
) =0, (=1, f""(0)=0, ...; generally, f(0)=1, if n is even, and
f(0) =0 if n is odd. Whence, from (1), we have:
21

2 4
coshx=l+;—|+:—!+...+(;—ni!+... (3)

To determine the interval of convergence of the series (3) we apply the
d’'Alembert test. We have
i +2 420

" . — i x2 =5
nh—Pln (2n4+2)1 ° (2n)! —nllrmm (22 +4-1) (21 +2) =4
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for any x. Hence, the series converges in the interval — e < x < . The
remainder term, in accord with formula (2), has the form:

PLES
R, (x)=m! coshBx, if n is odd, and
A"+,
R, (x)=m! sinh B x, if n is even.
Since 0> 0>1, it follows that
|cosh9x|=m—ﬂge"l. |sinh9x|=|egx";_ax <el ¥,

%"

n41
and therefore | R, (x}ié;{%l)! el *1 A series with the general term il

converges for any x (this is made immediately evident with the help o
d’Alembert’s test); therefore, in accord with the necessary condition for
convergence,

. |x|ﬂ+1

nsw (BFI)N

and consequently lim R, (x)=0 for any x. This signifies that the sum of the

A—>mo

series (3) for any x is indeed equal to coshx.
2°. Techniques employed for expanding in power series.
Making use of the principal expansions

2 n
1. e":1+—l’-‘i+%+...+fﬁ+... (—oo < x < ),

1 inx——i——JLaI f—- —1)" ki + (—o0 < x < )
Enr=gegiteT oW memtes il
. xﬁ xtt " x!ﬂ L
11, CUSI——]*EE+ZT—...+(—1} m—l-... (—oo <x <L co).

v, u+x)m*=1+'-l"_lx+—_~2!'—"—'lx=+...
e

X-[—... (—1<x<l)~)l
2 n
\Y In(l—}—x):x-—%—i—%s—...—|—(-——l)"“%—i—... (—l<x< ),

and also the formula for the sum of a geometric fprogression, it is possible,
in many cases, simply to obtain the expansion of a given function in a po-
wer series, without having to investigate the remainder term. It is sometimes
advisable to make use of termwise differentiation or integration whenexpan-
ding a function in a series. When expanding rational Tunctions in power
series it is advisable to decompose these functions into partial fractions.

*) On the boundaries of the interval of convergence (i.e., when x=—|
and x=1) the expansion IV behaves as follows: for m =0 it converges abso-
lutely on both boundaries; for 0 >m >—1 it diverges when x=—1 and
Eongiitionaliy converges when x=1; for m<—1 it diverges on both boun-

aries.
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Example 2. Expand in powers of x*) the function
3
==y aTe0
Solution. Decomposing the function into partial fractions, we will have

1 D
F=y—tizoy

Since
1 @w
== 2 .
e B = N @)
n=9
and
1 —
H—Qx=1--2x+(2x)’—-. co= 3 (=12, (5)
n=g
it follows that we finally get
o o -5
f(Jﬂ:E xﬂ+22(—-])"25xﬂ=2 “+(-l)"2”+']x". (6)
H=o n=o n=a

The geometric progressions (4) and (5) converge, respectively, when |x| <1
and |x| < 5 hence, formula (6) holds for |x|<—=, i.e., when
1 ]
_— '2— < X < —2-
3°. Taylor’s series for a function of two variables. Expanding a function
of two variables f(x, ) into a Taylor's series in the neighbourhood of a
point (a, b) has the form

| } 0 | ad
a]* 1 0 dgi1®
+(y-—b)@] [ (a, b)+--»+m[(x—ﬂ)a+{y—b) ‘E] fa, &) -+... (D)

If a=b=0, the Taylor series Is then called a Maclaurtn's sertes. Here the
notation is as follows:

af (x, y) of (x, y)

[ d a X, )
le_a)a:‘f—i-[y_—b) 5_1_}_ ’ (a, b)"" Ox (x—ﬂ]+ ay Uf—b):
xXx=a X=i{l
y=b y=b
[ 0 a7? o (x,
o g tu—ng| p=2lEN | oy
x=a
y=b
a*f (x, a*f (x,
-+ 2 —‘%{c—-ayﬂ (x—a)(y—b)+ [‘;;, 9) (y—b)* and so forth.
X=a X=a
y=b y=b

*) Here and henceforward we mean “in positive integral powers”,
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The expansion (7) occurs if the remainder term of the series
o 1 a a1k
Rute, D=F (e, 9—{/ @, 0+ ¥ fi|e—0 g +u—n5 ] @ bp —o
=1

as n—> . The remainder term may be represented in the form

n+1
Rult, 0+ gy = s+ 0= 2] F 50 .

x=a+9(x-a)
y=b+ii(y—-b)

where 0 <B < 1.

Expand the indicated functions in positive integral powers
of x, find the intervals of convergence of the resulting series and
investigate the behaviour of their remainders:

2587. a” (a > 0). 2589. cos (x + a).
: n 2590. sin® x.
2950, i (x t3 ) ' 2501*. In (2 + x).

Making use of the principal expansions [-V and a geometric
progression, write {he expansion, in powers of x, of the following
functions, and indicate the intervals of convergence of the series:
2x—3

2
2592. E__—l), . 2598. cos® x.
3x—>5 .
2593. m " 2599, sindx + x cos 3.’6.
—2 X
2594, xe™**, 2600, m .
.2 1
595. e*. 2601, — .
2595. e . [ Viwry
2596. sinh x. 2602. In (1%,
9597. cos 2x. 2603. In (1 - x—2x%).

Applying differentiation, expand the following functions in
powers of x, and indicate the intervals in which these expansions
occur:

2604. (14 x)In(1 4 x). 2606. arcsin x.

2605. arctanx 2607. In(x+V1+x%).

Applying various techniques, expand the given functions in

powers of x and indicale the intervals in which these expansions
occur:

2608. sin® xcos® x. 9612. x*—3x4-1
2609. (1 +x)e™7, x*—5x+6
2610. (1 + ). 2613. cosh® x.

) |
2611. 3/ 3+ x. 2614, -
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2615. In (x* +3x + 2). x ‘
;. 2618, (£,
2616.‘g§%fdx. :

dx
— x4

’ 2619. 5
2617. {e*dx. )V

Write tnhe first three nonzero terms of the expansion of the
following functions in powers of x:

2620. tan x. 2623, sec x.
2621. tanh x. 2624. Incosx.
2622, pr05x, 2625. e~ sin x.

2626*. Show that for computing the lenglh ot an ellipse it is
possible to make use of the approximate formula

sz?na(l—%),

where & is the ecceniricity and 2a¢ is the major axis of the
ellipse.

2627. A heavy string hangs, under ils own weight, in a ca-
tenary line yz—_acosh%, where a=—':]— and H is the horizontal

tension of the string, while ¢ is the weight of unit length. Show
that for small x, to the order of x*, it may be taken that the

string hangs in a parabola y=a ¢} ;—;

2628. Expand the function x*—2x*—56x—2 in a series of
powers of x-| 4,

2629. f(x)=56x"—4x*—3x-+2. Expand f(x+#h) in a series of
powers of h

2630. Expand Inx in a series of powers of x—1.
2631. Expand % in a series of powers of x—1.

2632, Expand :l-z in a series of powers of x+1.

2633. Expand P in a series ol powers of x 4-4.
1 ; ;

2634. Expand A Tdr7 \n a series of powers of x 42,

2635. Expand e in a series of powers of x--2.

2636. Expand }Vx in a series of powers of x—4.

2637. Expand cosx in a series of powers of x—% :

2638. Expand cos®x in a series of powers of x—%.
| —x

2639*. Expand Inx in a series of powers of 5"
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in a series of powers of

2640. Expand V 1+

2641. What is the magmtude of the error if we put appro-
ximately

1 1
ex 2+ ot gty ?
2642 To what degree of accuracy will we calculate the num-

ber T T if we make use of the series

x3 x*
arctanx=x—§+—5-—...,

by taking the sum of its first five terms when x=1?
2643*. Calculate the number % to three decimals by expand-

ing the function arcsinx in a series of powers of x (see Exam-
ple 2606).
2644. How many terms do we have to take of the series

2
cosx—l—@ oo g

in order to calculate cos18° to three decimal places?
2645. How many terms do we have to take of the series

sinx= x"_é'!'l'

to calculate sin 16° to four decimal places?
2646. How many terms of the series

e PR

have to be taken to find the number e to four decimal places?
2647. How many terms of the series

In(l+x)=x—%=—[—...,

do we have to take io calculate In2 to two decimals? to 3 de-
cimals? B

9648. Calculate 3/7 to two decimals by expanding the func-
tion f/8+x in a series of powers of x.

2649, Find out the origin of the approximate formula
l/a’-{—xssa-!—% (@>0), evaluate it by means of V23, putting
a=2>5, and estimate thi error.

2650. Calculate ;/19 to three decimals.
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2651. For what values of x does the approximate formula

x!
cos x~~1 —3

yield an error not exceeding 0.01? 0.001? 0.0001?
2652. For what values of x does the approximate formula

sin xax
yield an error that does not exceed 0.01? 0.001?

1/2

2653. Evaluate Sill;-fdx to four decimals.

-X7

2654. Evaluate \ e~*"dx to four decimals.

3

2655, Evaluate \}/xcosxdx to three decimals.

2G656. Evaluate ——ndx to three decimals.

= I

4

2657. Evaluate

';L.—'ﬂ:‘ak_-f“;_emuomun

 VT+xdx to four decimals.

ife

2658. Evaluate SVEe”dx to three decimals.

0
2659. Expand the function cos(x—y) in a series of powers

of x and y, find the region of convergence of the resulting series
and investigate the remainder.

Wiite the expansions, in powers of x and y, of the following
functions and indicate the regions of convergence of the series:

2660. sinx-siny. 2663*. In(l—x—y + xy).

2661. sin (x’ -|-y’). L 664*. arc tanl x+y

l—x+4y —xy "

2662%, T

2665. [(x, y)=ax"+4-2bxy+cy*. Expand f(x+h, y+ &) in po-
wers of & and &

2666. f(x, y)=x"—2y'+4-3xy. Find the increment of this
function when passing from the values x=1, y=2 to the values
x==14+h, y=2+k%.

2667. Expand the function e¢**? in powers of x—2 and y+2.

2668. Expand the function sin(x+y) in powers of x and

b1
J—g-
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Write the first three or four terms of a power-series expansion
in x and y of the functions:

2669. e* cosy.

2670. (1 +x)'*7,

Sec. 4. Fourier Series

1°. Dirichlet’s theorem. We say that a function [ (x) satisfies the Dirich-
let conditions in an interval (g, &) if, in this interval, the function

1) is uniformly bounded; that is |f(x)|=<<M when a < x<b, where M
is constant;

2) has no more than a finite number of points of discontinuity and
all of them are of the first kind [i.e., at each discontinuity &

the function f (x) has a finite limit on the left f(§—0)= lim f(§—e) and a
E—0
finite limit on the right f(E+0)= lim f(E+e) (e > 0)];
-0

3) has no more than a finite number of points of strict extremum.

Dirichlet’s theorem asserts that a function f(x), which in the interval
(— s, ) satisfies the Dirichlet conditions at any point x of this interval at
which [(x) is continuous, may be expanded in a trigonometric Fourier series:

f[x}=%— +a, cos x -+ b, sin x 4-a, €os 2x+4- b, sin 2x+4- ... +a, cos nx+
+bysinnx-..., (1)

where the Fourier coeffictents a, and b, are calculated from the formulas

m )
an=ﬁl Sf(x)cosnxdx(nzﬂ, I 2 ok b,,:-*?l[- Sf(x]sinnxdx (n=1,2, ...).
- -

If xis a poinl of discontinuity, belonging to the interval (—m, @), of a
function f(x), then the sum of the Fourier series S (x) is equal to the arithme-
tical mean of the left and right limits of the function:

1
S == l[f x=—=0 4+ (x+0)].
At the end-points of the interval x=—mn and x=n,
S(—m =S ()= [[ (= 7+0)+f (1—0)]

2°, Incomplete Fourier series. If a function f(x) is even [i. e, f(—x) =
= f (x)], then in formula (1)

b,=0 (n=1, 2, ...)
and

4
a,,:—;igux)cosnxdx (n=0, 1, 2, ...).
[}
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Il a function f(x) is odd [i.e., f(—x)=—[(x)], then a,=0(n=0,1, 2 ...)
and

)t
b,,=£—5f(x) sinnxdx (n=1, 2, ...)

A function specified in an interval (0, ) may, at our discretion, be conti-
nued in the interval (—m, 0) either as an even or an odd function; hence,
it may be expanded in the interval (0, m) 1n an incomplete Fourier series
of sines or of cosines of multigle arcs.

3°, Fourier series of a period 2/. If a function f(x) satisfies the Dirichlet
conditions in some interval (— /[, [) of length 2/, then at the discontinuities
of the function belonging to this interval the following expansion holds:

f(x)::%ﬂ-{—alcos:-%i—l—bl sin?—[—-a,cos?—ﬁif-{—b,sing—n!i+...
...-|—aﬂcosn£-£+businf%£+... .
where
{ 3\
a,,=—}— S.f(x) cosr%[fdx (n==0, L, B, o)
=1
: ¥ @)
b,,:% Sf(x) sin" dx (n=1, 2, ...).
/|

/

At the points of discontinuity of the function f(x) and at the end-points
x= -1 of the interval, the sum of the Fourier series is defined in a manner
similar to that which we have in the expansion in the interval (—m, m).

ln the case of an expansion of the function f(x) in a Fourier series in
an arbitrary interval (a, a+2[) of length 2/, the limits of integration in
formulas (2) should be replaced respectively by a and a--21

Expand the following functions in a Fourier series in the
interval (— =, n), determine the sum of the series at the points
of discontinuity and at the end-points of the interval (x=—n,
x==m), conslruct the graph ol the f[unction itself and of the sum
of the corresponding series [outside the interval (—mn, m) as well]:

. { ¢, when —an<<x<0,

2671. [()=1 ¢ when 0<x<m.

Consider the special case when ¢,=—1, ¢,= 1.
ax when -—-n<<x=<0,
2672. f(x)={ bx when 0 << x < m,

Consider the special cases: a) a=b=1; b) a=—1, b=1;
¢) a=0, b=1; d) ga=1, b=0.

2673. [(x)=x". 2676. [(x)=cosax.

2674. [(x)=¢e"", 2677. [(x) =sinhax.

2675. [(x)=sinax. 2678, f(x)=coshax.

2679. Expand the function f(x)=’-‘%’5 in a Fourier series in
the interval (0, 2=).
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2680. Expand the function f(x)=-’:- in sines of multiple arcs

in the interval (0, m). Use the expansion obtained fo sum the
number series:

1,1 1 , X
a)l—g+g—w+... 1 bBl+tg—s—qpgt+tgts—:-.
1,1 1,1

) l—gt+g—qtp—--

Take the functions indicated below and expand them, in the
interval (0, m), into incomplete Fourier series: a) of sines of
multiple arcs, b) of cosines of multiple arcs. Sketch graphs of
the functions and graphs of the sums of the corresponding series
in their domains of definition.

2681. f(x)=x. Find the sum of the following series by means
of the expansion obtained:

L mt gt ...

2682. f(x)=x". Find the sums of the following number series
by means of the expansion obtained:

D l4gidmt i 2 l—gdgi—gt

2683. f(x)=e"".
[ 1 when 0<x<%—.
2684, [ (1) =

0 when %s:__x<n.
\

x when 0<xé%—,
2685. f(x)=4

n—x when %<x<:rr..

\
Expand the following functions, in the interval (0, =), in
sines of multiple arcs:

x when 0<x-.<._-g~.

0 when i;- <L X< T
2687. f(x)=x(n—x).

2688. [ (x)= sin .

Expand the following functions, in the interval (0, m), in co-
sines of muliiple arcs:

(1| when 0<x<h,

2686. f(x)=
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X
2690. f(x):{ | —5; when 0<x<2h,

0 when 2h<<x<m.
2691, f(x)=xsinx.

cos x when 0 < x<< 2

2692. [ (x) ={ 2’

—c0s x when %c:x«(n.

2693. Using the expansions of the functions x and x* in the
interval (0, =) in cosines of multiple arcs (see Problems 2681 and
2682), prove the equality

@
Y COS nX 3x? —6my 4 2n® s
2— nE 12 (0 <

n=i

2694**, Prove that if the function f(x) is even and we have
f(g—+x}=——f(—,}—-x), then i1ts [Fourier series in the interval
(—m, n) represents an expansion in cosines ol odd multiple arcs,

and if the function f(x) is odd and I(%ﬂ- x)=f (%—x), then

in ihe interval (—=, n) it is expanded in sines of odd mul-
tiple arcs,

Expand the following functions in Fourier series in the indi-
cated intervals:

2695. f(x)=|x| (—1<<x<).

2696. f(x)=2¢x (O<<x<<l).

2697, f(x)=¢* (—l<<x<)).

2698. f(x)=10—x (OB<<x< 15).

Expand the [ollowinz functions, in the indicated intervals,
in incomplete Fourier series: a) in sines of multiple arcs, and
b) in cosines of multiple arcs: '

2699. [(x)=1 (0< x<1).

2700, f(x)=x (O<x<l).

2701. f(x)=x" (0L xh<: ‘2:8).

x when 0<Cx<1,

2702. H’t):{ 2—x when | << x< 2.

2703. Expand the following function in cosines of multiple
arcs 1n the interval (‘3, 3):

f(x)=' ] when%-(xs;&
l 3d—x when 2<<x<<ad.

11-1900



Chapter IX
DIFFERENTIAL EQUATIONS

Sec. 1. Verifying Solutions. Forming Differential Equations of Families of
Curves. Initial Conditions

1°. Basic concepts. An equation of the type
Fx, g, ¥’ ..., N'"=0, (1)

where y=y (x) is the sought-for functinn, is called a differential equation of
order n, The function y=¢ (x), which converts equation (1) into an identily,
is called the solution of the equation, while tha graph of this function 1s
called an infegral curve. 1f the solution is represented implicitly, @ (a, y) =0,
then it is usually called an integral

Example 1. Check that the function y=sinx is a solution of the equation

¥ +y=0.
Solution. We have:
y'=cosx, y=—sinx
and, consequently,
y" + 1y =—sin x4-sin x==0.

D(x, 4, €y ..., Cp)=0 (2)

of the differential equation (1), which contains n independent arbitrary con-
stants C,, ..., C, and is equivalent (in the given region) to equation (1), 1s
called the general integral of this equation (in the respective region). By assign-
ing definite values to the constants C,, ..., C, in (2), we get particular
integrals.

Conversely, if we have a family of curves (2) and eliminate the param-
eters C;, ..., C, from the system of equations

do_o a0
dx ' Y dx® T
we, generally speaking, get a differential equation of type (1) whose general

integral in the corresponding region is the relation (2).
Example 2, Find the differential equation of the family of parabolas

The 1ntegral

O =0,

0,

y=0C; (x—Cy)* (3)
Solution. Differentiating equation (3) twice, we get:
y'=2C, (x—C,) and y'=2C,. (4)

Eliminating the parameters C, and C, from equations (3) and (4), we obtain
the desired differential equalion

20y" =y
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It 1s easy to verify that th: function (3) converts this equation into an
identity.

2°, Initial conditions. If for the desired particular solution y =y (x) of a
differential equation

y“’":f(x. Y, y't sy ytﬂ-ﬂ" 15)
the intltal conditions
Yyi(x) =Y Y (xo)=y;s T y'"'”(xo)=y.‘,"'“
are given and we know the general solution of equation (5)
y=¢(x, C, .... C),

then the arbitrary constants C,, ..., C, are determined (il this is possible)
from the system of equations

Yo =9 (g, Cy, +0vy Cp),
Y= Py (-"o' Cu ey Cn)r

gyt =itV (x,, C,, ..., C,).

Example 3. Find the curve of the family
y=_C,e* 4 Ce~?*, (6)
for which y(0)=1, ¥ (0)=—2.
Solution. We have:
y'=Cie*—2Ce-%*

Putting x==0 in formulas (6) and (7), we obtain (7)

1=C, +C,, —2=C,—2C,,
whence
C,:O' €=
and, hence,
y=e >

Determine whether the indicated functions are solutions of the
given diflerential equations:
2704. xy' =2y, y=>5x".

2705. y*=x*+y*, y= —L- :

C? —x‘

2706, (x Fy)dx xdy=0, y=
2707. y—]—y 0, y=3sinx— 4L0:>x
2708. jt,-mx._o x=0C, cos ot + C, sin of.

2709. y'—2y'+y=0; a) y=xe", b) y=x'e"
2710. y"— (A, +A,) ¥’ s Ay =0,
y=C, ehux | C,eh,
Show that for the given differential equations the indicated
relations are integrals:
27111, (x—2y)y' =2x—y, x*—xy t 4 == C*.




324 Differential Eqguations |Ch. 9

2712, (x—y+1)y'=1, y=x-Ce.

2713. (xy—x)y"+xy'* +yy'—2y' =0, y=In(xy).

Form differential equations of the given families of curves
(C, C, C,, C, are arbitrary constants):

2714. y=Cx. 2721. In~=1+ay
2715. y=Cx’. Y

2716, y* =2Cx.
2717. x*4-y' =C",
2718. y=_=Ce".

2719. x*=C (x*— y*).

‘ . (a is a parameter).
2722. (y—y,) =2px
(y,» p are parameters).
2723, y=C,e'* 4 C,e™".
> 2724. y=C, cos2x+C, sin 2x.
2720, y' 4 =24Ce 7. 2725 y=(C,+Cx)e"+C,.

2726. Form the; differential equation of all straight lines in the
xy-plane. '; :

2727. Form the differential equalion of all parabolas with
vertical axis in the xy-plane.

2728, Form the differential equation of all circles in the
xy-plane.

For the given families of curves find the lines that satisiy
the given initial conditions:

2729. x*—y*=C, y(0)=5.

2730. y=(C,4-Cx)e**, y(0)=0, y'(0)=1.

2731. y=C,sin(x—C,), y(m)=1, y' (n)=0.

2732. y=Ce*+C,e”*+C ',

y(0)=0, ¢y (O)=1, y"(0)=—2.

Sec. 2. First-Order biﬁerential Equations

1°. Types of first-order differentfal equations. A differential equation of
tte ?rst order in an unknown function y solved for the derivative y’, is of
the form

y'=Fx 9, (1)
where f(x, y) is the given function. In certain cases it is convenient fo

(f:onsider the variable x as the sought-for function, and to write (1) in the
orm

x'=g(x, ¥), (")
where g(x, y)=—1-.
f(x, v)
Taking into account that y':% and x‘=3—-;. the differential equations
(1) and (1") may be written in the symmetric form
P(x, y)de+Q(x, y)dy=0, (2)

where P (v, ) and Q (x, y) are knowr functions.
By solutions fo (2) we mean functions of the form y=¢ (x) or x=1 (y)
that satisfy this equation, The general integral of equations (1) and (1’), or
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equation (2), is of the form
D (x, y, C)=0,

where C is an arbitrary constant.
2°. Direction fleld. The set of directions

tana={(x, y)

is called a direction flield of the differential equation (1) and is ordinarily
depicted by means of short lines or arrows inclined at an angle a.

Curves f({(x, y)==~hk, at the points of which the inclination of the field
has a constant value, equal to k&, are called isoclines. By constructing the
isoclines and direction field, it is possible, in the simplest cases, to give a

Yi

. f
A A 4
Y147
. =+
‘-I—

v +

> T

“h

.

rough sketch of the field of intagral curves, regarding the latter as curves
which at each peint have the given direction of the field.

Example 1. Using the method of isoclines, construct the field of integral
curves of the equation

y' =x.

Solution. By constructing the isoclines x=£k (straight lines) and the di-

rection field, we obtain approximately the field of integral curves (Fig. 105).
The family of parabolas

xl
y=?+C
is the general solution.

Using the method of isoclines, make approximate constructions of flields
of integral curves for the indicated differential equations:

2733. y' = —x.

2734, y'=——;—.
2735. y' =144,
2736. y' =1L,

2737, y' =x*+y'
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3°, Cauchy’s theorem. If a function f(x, y) is continuous in some region
U{a<x<A, b<y<B} and in this region has a bounded derivative
fy (%, ¥), then through each point (x, y,) that belongs to U there passes one

and only one integral curve y=¢ (x) of the equation (1) [@ (%) =y,l.
4°. Euler’s broken-line method. For an approximate construction of the

integral curve of equation (1) passing through a given point M, (x,, y,). we
replace the curve by a broken line with vertices M; (x;, y;), where

Xy =Xi+Axp, Ype,=y;+ Dy

Axi=h (one step of the process),
Ay;=hflx, ) (=0, 1,2, ...)

Example 2. Using Euler's method for the equation

. XY
y = 5
find y (1), if y(0)=1 (h=0.1).
We construct the table:
i x i :E.y_i
i Hi Ay, 50
0 0 1 0
| 0.1 1 0 005
2 0.2 1.005 0.010
3 0.3 1 015 0 015
4 04 1.030 0 021
5 0.5 1.051] 0 026
b 0.6 1.077 0 032
i 0.7 1.109 0.039
8 0.8 1.148 0 046
9 0.9 1.194 0.054
10 1.0 1.248

Thus, y(1)=1.248. For the sake of comparison, the exact value is
1

y(1)=e-"—== 1.284

Using Euler’s method, find the particular solutions to the
given diflerential equations for the indicated values of x:

2738. y'=y, y(O)=1; find y(1) (h=0.1).

2739. ' =x4y, y()=1, find y(2), (h=0.1).

2740, y'=-—-l-_”ﬁ, y(0)=2; find y(1) (h=0.1).
2741. y'=y-%, y(0)=1; find (1) (h=0.2).
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Sec. 3. First-Order Differential Equations with Variables Separable.
Orthogonal Trajectories

1°. First-order equations with variables separable. An equation with variables
separable is a first-order equation of the type

y'=f(x)gy (1

XY (@ de+ X, (x) Y, (y) dy=0 (1)

Dividing both sides of equation (1) by g(y) and multiplying by dx, we get
%_—_f(x) dx Whence, by integrating, we get the general integral ol equa-

tion (1) in the form

or

dy
g (y)

Similarly, dividing both sides of equation (1") by X, (x)Y (¥) and integrating,
we gel the general integral of (1) in the form

X (\') Y;(”) - r
St ) prgw=c )

If for some value y=y, we have g(v,) =0, then the function y=y, is
also (as is directly evident) a solulion of equation (1) Similarly, the straight
lines x =a and y =b will be the integral curves of equation (1'), il ¢ and &
are, respectively, the roots of the equations X, (x) =0 and Y (y)=0, by the
feft sides of which we had to divide the inmitial equation.

Example 1. Solve the equation

=Sfuun+c 2)

J— o
¥ ==cs (3)

In particular, find the solution {hat satisfies the initial conditions

y(l)=2

Solution. Equation (3) may be written in the torm
. ]
dx= x’

Whence, separaling variables, we have
dy dx

vy x
and, consequently,

In|y|=—1In|x|+InC,,

where the arbitrary constant InC, is taken in logarithmic form. After taking
antilogarithms we get the general solution

i

where C= 4 C,.
When dividing by y we could Jose the solution y=0, but the latter is
contained in the formula (4) for C=0.
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Utilizing the pivennitial conditions, we get C=2; and, hence, the de-
sired particular solution is

2

y=7.

2° Certain differential equations that reduce to equations with variables
separable. Differential equations of the form

Y =Fflax+4by-+c) (b#0)

reduce to equations of the form (1) by means of the substitution u=ax4by+e¢,
where u 1s the new sought-for function

3° Orthogonal trajectories are curves that intersect the lines of the given

family @ (x, y, @ =0 a 1s a parameter) at a right angle, I F(x, y,4")=0
is the diflerential equation of the family, then

(e )0

i{s the dilferential equation of the orthovonal trajectories.
Example 2. Find the orthosonal trajectories of the family of ellipses

Xt 4242 =a?, (5)

Solution Differentiating the equation (5). we find the diderential equa-
tion of the family

x+2yy" =0,
't
%

X

o
L

A
W
Y
5’0

Q
YN
e

o"l
oS

Fig. 106

Whence, replacing i by ——5—;, we get the differential equation el the
orthogonal trajectories

2 , 2
x——u‘—y,-=0 or y =-§—”.

Integrating, we have y=Cx* (family of parabolas) (Fig. 106).



Sec. 3) Differential Equations with Variables Separable 329

4°. Forming differential equations. When forming differential equations in
geometrical problems, we can frequenily make use of the geometrical meaning
of the derivative as the tangent of an angle formed by the tangent fine to
the curve in the posttive x-direction. In many cases this makes it possible
straightway to establish a relationship between the ordinale y of the desired
curve, its abscista x, and the tangent of the angle of the tangent line g',
that is to say, to obtain the diffeiential equation. In other instances (see
Problems 2783, 2890, 2895), use is made of the geometrical significance of
the definite inlegral as the area of a curvilinear ltrapezoid or the length of
an arc. In this case, by hypothesis we have a simple integral equation
{since the desired function is under the sign of the integral); however, we
can readily pass to a differential equation by difterentialing both sides.

Example 3. Find a curve passing through the point (3,2) for which the
segment of any tangent line contained belween the coordinate axes is divid-
ed in half at the point of tangency.

Solution. Let (x,y) be the mid-pont of the tangent line AB. which by
hypothesis is the point of tangency (the points A and B are points ol inter-
section of the tangent line with the y- and x-axes). It is given that OA=2y
and OB =2x. The slope of the tangent to the curve at M (x, y) is

This is the differential equation of the sought-for curve. Transforming, we ged
dr , dy
X Y

=0

and, consequenily,
Inx+41ny =InCor xy=C.

Utilizing the initial condition, we determine C=3.2=6. Hence, the desircd
curve is the hyperbola ay==6.

Solve the differential equations:

2742. tan xsin® ydx - cos® xcot ydy=0.

2743, xy' - y=1y".

2744. xyy' —=1—x'.

2745, y—xy’ =a(l +x'y’).

2746. 3¢* tan ydx-+ (1 —e*)sec* ydy=0.

2747. y’ tan x=y.

Find the particular solutions of equations that satisly the
indicated initial conditions:

2748. (1 +¢*) y y' =e*, y=1 when x=0.

2749, (xy* +x)dx+4-(*y—y)dy=0; y=1 when x=0.

2750. y'sin x=ylny; y=1 when xz%.

Solve the differential equations by changing the variables:
2751. ¢’ = (x +y)*.

2752. y=(8x -+ 2y + 1),

2753, (2x +3y— 1)dx -+ (4x+ €y—5)dy =0,

2754, (2x—y)dx+ (4x—2y 4-3) dy =0,
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In Examples 2755 and 2756, pass to polar coordinates:
9755, y' =t to—1

Y

2756. (x*+ y*)dx—xydy=0.

2757*. Find a curve whose segment of the tangent is equal
to the distance of the point of tangency from the origin.

2758. Find the curve whose segment of the normal at any
point of a curve lying between the coordinate axes is divided in
two at this point.

2759. Find a curve whose subtangent is of constant length a.

2760. Find a curve which has a subtangent twice the abscissa
of the point of tangency.

2761*. Find a curve whose abscissa of the centre of gravity
of an area bounded by the coordinate axes, by this curve and
the ordinate of any of its points is equal to 3/4 the abscissa of
this point.

2762. Find the equation of a curve that passes through the
point (3,1), for which the segment of the tangent between the
point of tangency and the x-axis is divided in half at the point
of intersection with the y-axis.

2763. Find the equation of a curve which passes through the
point (2,0), if the segment of the tangent to the curve between
the point of tangency and the y-axis is of constant length 2.

Find the orthogonal trajectories of the given families of cur-
ves (a is a parameter), construct the families and their orthogo-
nal trajectories.

2764, x'+y' =a’. 2766. xy=a.

2765. y* =ax. 2767. (x—a)' ry* =a’.

Sec. 4. First-Order Homogeneous Differential Equations

1°. Homogeneous equations. A differential equation ,
P (x, ) dx+Q (x, y) dy=0 (1

is called homogeneous, if P (x,y) and Q (x, y) are homogeneous functions of
the same degree. Equation (1) may be reduced to the form

y'=r(%):

and by means of the substitution y=xu, where u is a new unknown function,

it is transformed to an equation with variables separable. We can also apply
the substitution x = yu.

Example 1. Find the general solution to the equation
4
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Solution. Put y=uwx; then u+xu'=e"”+u or

e_"du=d—§.
X
" &
integrating, we get u=—1In In—x-, w hence
=——xlnln£—.
X

2°. Equations that reduce to homogeneous equations.
If

a,x+ by +¢, ) @)

# __:f( axX -+ by + €,

and 6=‘ :‘g'
the constants @ and f are found from the following system of equations,
a0+bf+e,=0, aou+bB+4c,=0,

we get a homogeneous differential equation in the variables u and v. If
8=0, then, putting in (2) ax4-by=u, we get an equation with variables
separable,

# 0, then, putting into equation (2) x=u+a, y=v 4B, where

Integrate the diflerential equations:
2768, y’ =2 2770. (x—y)ydx—x'dy=0.

—:'f-- .
2769. y' = — ¥,

X

2771. For the equation (x* +y") dx—2xydy =0 find the family
of integral curves, and also indicate the curves that pass through
the points (4,0) and (1,1), respectively.

2772. ydx+ 2V xy—x)dy=0.

2773. xdy— ydx=V x* + y'dx.

2774, (4x* + 3xy + ) dx 4+ (4y* +3xy+x')dy =0.

2775. Find the particular solution of the equation (x* —3y*)dx+
+- 2xydy =10, provided that y=1 when x=2.

Solve the equations:

2776. 2x—y + Hdy+(x—2y+B)dx=10.

;  1—3x—3y v X+2y+41

2777, y T S 2778. y =iy 3

2779. Find the equation of a curve that passes through the
point (1,0) and has the property that the segment cut off by the
tangent line on the y-axis is equal to the radius vector of the
point of tangency.

2780**, What shape should the reflector of a search light
have so that the rays from a point source of light are rellected
as a parallel beam?
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2781. Find the equation of a curve whose subtangent is equal
to the arithmetic mean of the coordinates of the point of tan-
gerncy.

2782. Find the equation of a curve for which the segment
cut off on the y-axis by the normal at any point of the curve
is equal to the distance of this point from the origin.

2783*. Find the equation of a curve for which the area con-
tained between the x-axis, the curve and two ordinates, one of
which is a constant and the other a variable, is equal to the
ratio of the cube of the variable ordinate to the appropriate
abscissa.

2784. Find a curve for which the segment on the y-axis cut
off by any tangent line is equal to the abscissa of the point of
tangency.

Sec. 5. First-Order Linear Differential Equations.
Bernoulli’s Equation

1°. Linear equations. A differential equation of the farm
Yy + P (x)y=Q (x) (N

of degree one in y and y" is called linear.
If a function Q (x) =0, then equation (1) takes the form

Yy +Px)y=0 (2)

and is called a homogeneous linear differential equation. In this case, the
‘ivariables may be separated, and we get the general solution of (2) in the
orm :

- J' P(x)dx

y=C-g (3)

To solve the inhomogeneous linear equation (1), we apply a method that
is called variation of parameters, which consists in first finding the general
solution of the respeclive homnogeneous linear equation, that is, relation-
ship (3). Then, assuming here that C is afunction of x, we seek the solution
of the inhomogeneous equation (1) in the form of (3). To do this, we put into
(1) y and y* which are ‘}ound from (3), and then from the differential equa-
tion thus obtained we determine the function C (x). We thus get the general
solution ol the inhomogeneous equation (1) in the form

y=Ce™d PO,

Example 1. Solve the equation
y'=tan x-y - cos x. (4)
Solution. The corresponding homogeneous equation is

y' —tlanx-y==0.
Solving 11 we get:
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Considering C as a function of x, and differentiating, we find;
__1 dC  sinx
Y=Cosx "dx T costx

Putting y and y’ into (4). we get:

! eg , snk C=tanx +cos x, or dc-—cos’x
cosx dx ' cos®x COS X ; dx ;

whence

C (x) =S cos? xdx = ;— x+ % sin 2x 4 C,.
Hence, the general solution of equation (4) has the form

1 | . 1

cosx

In solving the linear equation (I) we can also make use of the subslitu-

tion
y=uv, (3)
where u and v are functions of x. Then equation (1) will have the form
fu"+P(ulv-ov'u=Q (x). (6)
if we require that
w4 P(x)u=:0, (7)

then from (7) we find «, and from (6) we find v; hence, from (5) we find g.
2’. Bernoulli’s equation. A first-order equation of the form

Y +P)y=0Q (x)y"

where a # 0 and a # 1, is called Bernoullt’s equation 1t is reduced to a Ii-
near equation by means of the substitution z=¢y'"7 It is also jossible to
apply directly the substitution gy=wuwv, or the method of varia-
tion of parameters.

Example 2. Solve the equation

’ 4 =
y=—y+xVy.

Solution. This is Bernoulli's equation. Putting

y=u-v,
we vet

u’v-}—v'u:--;-uv -+ x Vo or U(u'-—j{;u)—}—v'u:x ]/-W (8)
To determine the function u we require that the relalion
u'—i u=>0
X

be f[ulfilled, whence we have
u==x4
Putting this expression into (8), we get

Ao e e
v'xt=x ) uxs,
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1 l ’
DZ(E' nx—[-c) P
and, consequently, the general solution is obtained in the form
2
y=x“(—é—lnx+6) '
Find the general integrals of the equations:
2785. 4 .
X X

whence we find v:

2786. Y 4 X _ o

“dx ' x ’
2787*. (14 ¢*)dx=(V 1+ 4" siny—xy) dy.
2788. y'dx— (2xy + 3)dy=0.

Find the particular solutions that satisfy the indicated con-
ditions:

2789. xy' 4+ y—e*=0; y=>b when x=a.
2790. y'—T—_-?'-F—l—x=0; y=0 when x=:0.
2791. y' —ytanx=

——d y=0 when x=0.
Find the general solutions of the equations:
2792, Y4 ¥ — .

2793. 2xy ¥ _ gt 4+ x=0.

2704, ydx-i—(x——é—x’y)dy-:().

27953. 3xdy=y(l + x sin x— 3y’ sin x) dx.

2796. Given three particular solutions y, y,, y, of a linear
equalion. Prove that the expression 2—Y remains unchanged for

=¥,
any x. What is the geometrical significance of this result?

2797. Find the curves for which the area of a triangle formed
by the x-axis, a tangent line and the radius vector of the point
of tangency is constant.

2798. Find the equation of a curve, a segment of which, cui
ofi on the x-axis by a tangent line, is equal to the square of the
ordinate of the point of tangency.

2799. Find the equation of a curve, a segment of which, cul
off on the y-axis by a tangent line, is equal to the subnormal.

2800. Find the equation of a curve, a segment of which, cut

ofl on the y-axis by a tangent line, is proportional to the square
of the ordinate of the point of tangency.
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2801. Find the equation of the curve for which the segment
of the tangent is equal to the distance of the point of intersec-
tion of this tangent with the x-axis from the point M (0,q).

Sec. 6. Exact Differential Equations.
Integrating Factor

1°. Exact differential equations. If for the differential equation
P(x, y) dx+Q (x, y)dy=0 (1)
the equality g—::-z(;;—g is fulfilled, then equation (1) may be writlen in the

form dU (x, y)y=0 and is then called an exact differential equation. The gen-
eral integral of equation (1) is U (x, y)=C. The function U (x, y)is deter-
mined by the technique given in Ch. VI, Sec, 8, or from the formula

U= Sxp (%, y) dx + SyQ (%, ¥) dy
x, Y

(sece Ch, VII, Sec. 9).
Example 1. Find the general integral of the differential equation

(3x* + 6xy*) dx + (6x%y - 4¢*) dy = 0.

2 2
Solution. This is an exact differential equation, since O408™ L O)

dy
2 : 3
2 (6¢ gj' W) _ 12xy and, hence, the equation is of the form dU =0,
Here, U
a-g__ 3 £ a ==L 2 L
3, = 3x' +6xy* and E-ﬁx y+4y%
whence

U={ @ +6xs) dx+9 () =+ 43"+ 9 ).

Differentiating U with respect to y, we find %;:(Sx'y + @' (y) =62y + 44 (by

hypothesis); from this we get ¢’ (y)=4y* and q)(i,r)=y“-|-C. We finally get
U (y, y) =x"4 3%+ y*+ C,, consequently, x*+ 3x y’—{—y‘:(f is the sought-for
general integral of the equation,

2°, Integrating factor. I the left side of equation (1)is not a total (exacl)
differential and the conditions of the Cauchy theorem are fulfilled, then there
exists a function p=p (x, y) (integrating factor) such that

IL (P dx+ Q dy)=dU. (2)
Whence it is found that the function p satisfies the equation

d )
& (uPl=5‘ (1 Q).

The integrating factor p is readily found in iwo cases:

| (0P @

1) Q—(a—y—a-?)=F(x), then p=u (x);
| (0P 8

2)7,(@—%):1?, @), then n=p (y).
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" 3
Example 2. Solve the equation (2xy+x’y+y—3)dx+lx’+y=)dy=0.

Solution. Here P=2xy _i_x’y _,_U_; , Q =x!_[_yz

1 /0P 0Q\ _ 2x4x*4y*—2¢ .
and 6—(55--—6-;)_ e =1, hence, p=p (x).
o 0(rP)_0(nQ) oP_ 0Q , dp
Since I ™ or “@““Tﬂ: +Qc'ﬁ:"’
it follows that

dp_ 1 (ap aQ

B Q\ody ox

)d.r=dx and Inp=x, p=e~,

Multiplying the equation by p=e*, we obtain
3
e* (2xy+x’y+‘% ) dx+-e% (4 y*) dy =0

which is an exact dilferential equation, Integrating it, we get the general
integral

ye* (x’+y§!)=0.

Find the general inlegrals of the equations:

2802 (x-y)dx+ (x + 2y) dy =0,
2803. («' +y*+2x)dx +2xydy=0.
2804. (x'—3xy® + 2)dx— (3x’y—y*)dy=0.

xdy—ydx
2805. xdx—ydy-—--—:",—_s;—,—.
t_gx!

2806. =5 E% 7 dy =0.
2807. Find the particular integral of the equation

(Jv::—l—ei-:”)e::[:«:-|—ffyjE (1——3)dy=0.

which satisfies the initial condition y (0)=2.

Solve the equations that admit of an integrating factor of the
form p=p(x) or p=p(y):

2808. (x+ y*)dx—2xydy=0.

2809, y (1 + xy)dx—xdy=0.

2810. %—dx-{«(y'—ln x)dy = 0.
2811. (xcosy~—ysiny)dy+ (xsiny-t ycosy)dx=0.
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Sec. 7. First-Order Differential Equations not Solved
for the Derivative

1°. First-order differential equations of higher powers. If an equation
Fx, 4, y')=0, (1

which for example is of degree two in y’, thea by solving (1) for p' we get
two equations:

y=F&0), y=Ixy. (2)

Thus, generally speaking, through each point M, (x,, y,) of some region
of a p!ane there pass two integral curves. The general integral of eguation
(1) then, generally speaking, has the form

D (x, y, CY=D, (x, y, C) D, (x, y, C)=0, (3)

where (D, and @, are the general integrals of equations (2).

Besides, there may be a singular integral for equation (1), Geometrically,
a sincular integral is the envelope of a family of curves (3) and inay be ob-
tained by eliminating C from the system of cquations

D (x, y, C)=0, (D;; (x, y, C)=0 4)
or by eliminating p=y’ from {he system of equations
F (%, 4, p)=0, F,(x, 4 p)=0. (5)

We note that the curves defined by the equations (4) or (5) are not
alwavys solutions of equation (1); therefore, in each case, a check is necessary,.
Example 1. Find the general and singular integrals of the equation

"% 2xy'—y = 0.

Solution. Solving for ' we have two homogeneous equations:

y=—1+ ]/1+£-. y'=—1— ]/1 Jr%,

defined in the region

x(x ‘l"y] >0i

the general integrals of which are

(V)5 (VTvEn)-2

@r4y—C)—2 Vit xy=0, (2r+y—C)+2 Vi fxy=0.
Multiplying, we get the general integral of the given equation
(2x+y—Cy—4 (x* - xy) =0
(y—C)=4Cx

or

or
(a family of parabolas).

Differentiating the general integral with respect to C and eliminaling C,
we find the singular integral
y+x=0.

(It may be verifled that y4+x=0 is the solution of this equation.)
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it is also possible to find the singular integral by differentiating
xp*+42xp—y =0 with respect to p and eliminating p.

2°, Solving a differential equafion by introducing a parameter. If a first-
order differential equation is of the form

x=9(y, ¥'),
then the variables ¥ and x may be determined from the system ol equations
1 do  Opdp _
-p-"'ay +0 dy ’ x"’"q)(.!h p)'

where p=y’ plays the part of a parameter.
Similarly, if y=v (x, '), then x and y are determined from the system

of equations
_Op dpdp -
P=atopaxr Y=V P

Example 2. Find the general and singular integrals of the equation
7 r x’
y=y*—xy +§ .

Solution. Making the substitution y’=p, we rewrite the equation in the
form
:

X
y=p'—r1p+5-

Differentiating with respect to x and considering p a function of x, we have

d d
= 2p E%_ -—x-£+x

or ‘;—2(2p—x)=-=(2p—x), or ‘;—z=1. Integrating we get p=x-+C. Substituting

into the original equation, we have the general solution
2 2
y={x—|—C)‘—-x(x+C)+% or y=%+Cx+C’.

Differentiating the general solution ;with respect to C and eliminating C, we
2

obtain the singular solution: y=x

T (It may be verified that y=1§- is the

solution of the given equation.)
If we equate to zero the factor 2p —x, which was cancel’led out, we get

paiz':- and, putting p into the given equation, we get y=f4- » which is the
same singular solution.

Find the general and singular integrals of the equations:

(Im Problems 2812 and 2813 construct the field of integral
curves.)

2812. y"-——%’-"y’ +1=0,
2813. 4y'"—9x = 0.
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2814. yy' —(xy + 1)y’ + x=0.
2815. yy''—2xy’ 4+ y=0.
2816. Find the integral curves of the equation y* +y'=1

that pass through the point M (0' é‘)

Introducing the parameter y’ = p, solve the equations:
2817. x=siny’ +Iny’. 2820, 4y = x4y

2818, y=y o, x_V+y”

2819, y=y"* +21ny’. 2821. e T

Sec. 8. The Lagrange and Clairaut Equaticns
1°. Lagrange’s equation. An equation of the form
y=x¢ (p)+¥(p) (1)

where p=y’ is called Lagrange's equation Equation (1) is reduced to a linear
equation in x by differentiation and taking into consideration that dy =pdx:

pdx=q (p)dx+ [x¢" (p)+ ¢ (p)] dp. (2)

If pz¢(p), then from (1) and (2) we gel the general solution in parametric
form:

x=Cf(p)+g ). y=[Cf(P)+g ] ¢ (p)+¥(p),

where p is a parameler and [(p), g(p) are certain known functions. Besides,
there may be a singular solution that is found in the usual way.

2°, Clairaut’s equation. Il 1n equation (l)p=e¢(p), then we get Clai-
raul's equation

y=xp-¥(p).

Its general solution 1s of the form y =Cx+ ¢ (C) (a fTamily of straight lines).
There 1s also a parficular solution (envelope) that results by eliminating the
parameter p from the system of equations

{ K== ‘P' (p)'
y=px+y (p)
Example. Solve the equation

|
Y —2y’x+?. (3)

. , 1 .
Solution. Putting ¢’ -=p we have y:2px-|—~ﬁ; differentiating and replac-
ing dy by pdx, we get ;
pd.rm2pdx+2xdp—ﬁ-:

or

Solving this linear equation, we will have

1
x=F_[Inp+C).
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Hence, the general integral will be

I x=";‘,(lnp+c);
1
l y--2px—]——;.

To find the singular integral, we form the system

! 1
y=2px+}—’-, ﬁ:'-g'f—-?

in the usual way. Whence

P, et
' J—p
and, consequently, _
y==42 V2x.
Putting ¢ into (3? we are convinced that the function obtained is not
a solution and, therelore, equation (3) does not have a singular integral.
Solve the Lagrange equations:
r J:
2822. y..—_%x(y'—kg;). 2824. y-;(l+g]f)x+y :
- P 2825*, y=——=y'(2x+y’).
2823. y=y + V' 1—y™ J gy (2xty)

Find the general and singular integrals of the Clairaut equa-
tions and construct the field of integral curves:

2826. y=xy +y".

2827. y=xy' +y'.

2828. y=xy' + V' 1+ ().

2829. g=xy'+?;—,-

2830. Find the curve for which the area of a triangle formed

by a tangent at any point and by the coordinate axes is con-
stant.

2831. Find the curve it the distance of a given point to any
tangent to this curve is constant.

2832. Find the curve [or which the segment of any ol its
tangents lying between the coordinate axes has constant length L

Sec. 9. Miscellaneous Exercises on First-Order Differential Equations

2833. Determine the types of diflerential equations and indi-
cate methods for their solution:

a) (x+yy ==xarctan%; e) xy’ *’i—y=3il’1_¢{:
b) (x—9)y =y ) W—xy'V =y"
c) ¥y =2xy + x*; g) y=uxe’’;

d) y' = 2xy -+u" h) (' —2xy)V y=x";
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i) ' =(x+y)%, D (x* 4+ 2xy")dx -+ ‘
j) xcosy' +ysiny =1, + (4" +3x°y") dy =0;
k) (x*—xy)y' =y m) (x*—3xy) dx + (x* +-3)dy =0;

n) (xy’ -+ Inx) dx=y'dy,

Solve the equations:

2834.

2835.

2836.
28317.
2838.

2839.
2840,
2841.

2842,
2843.

2844.

2848.
2849. y
2850.
2851.

2852.

2853.

2854.
2855.
2856.

2857.

2858.
2859.

2860.

a) (x—y cos %) dx+x cos-fi—dy.-.:();
b) xln-’:;dy—-ydx:().

2= (%—y’) dy.

(2xy*—y)dx +xdy=0.

xy' t-y—=xy* Inx.

y=xy'+y'Iny'.

y=xy' -V —ay’.
x'(y+1)de+ (X' —1) (y—1)dy =0.

(1 + %) (e** dx—e” dy) — (1 +-y) dy = 0.
y—y =1 2845. (1—=x")y' +1y=a.
ye' = (y° - 2xe”) y'. 2846. xy —?—x-—o.

J-|-_;cosx sinxcosx. 2847. y'(xcosy-a sin2y)=1.

(x y—x" -+ y—-1)dx + (xy +2x—3y—6) dy =0.
*I-E_—")
Xy dx-—g(xj+2)d_;
Y= Ty _
Y dp =
2lx + I/E dy — ]/; dx=0.
¥ =“—'!—;'+ tan % _ Zzz; c’dx2+ (’xe”'?l?y) df,:=0.
yy' -+ yf = cos x. ) y;“ ':y t by
xdy - ydx=-y'dx. 2863. y'==(1+Iny—Inux).
y' (x|-siny)=1. 2864. (2¢*--y*) dy—
yf—iﬁ=—p+p’. y+2——y’e"dx==0.
Xdx—(x* + ) dy =0, 2865. y'=2(ﬁy—_—]) .
X'y -+ 3xyy’ -+ 2866. xy (xy*+ 1) dy—dx=
—|-‘2y’=0. =00

x"}"jyd"' 2867. a(xy' -+ 2y) =xyy'.

Bl xdy—ydx 2868, xdy—ydx=y'dx.

+ 3 =0.

Y
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2869. (x*—1)**dy 4+ (x*+3xy }V x*—1)dx=0.

d
2870. tanx &—i—y= a.

2871, Va*+x*dy+ (x+y—Va*+ x*) dx=0.
2872, xyy*—(x*+y )y +xy=0.

2873. y— xy -|-y—‘-
2874. (3x* +2xy—y*)dx+ (¥ —2xy—3y*) dy = 0.
9875. 2yp j—; — 3p* 444",

Find solutions to the equations for the indicated initial con-
ditions:

2876. y'=5%£; y=0 for x=1.

2877. e*y'=1; y=1 for x=1.

2878. cot xy’ + y=2;, y=2 for x=0.

2879. & (y' +1)=1; y=0 for x=0.

2880. y' 4+ y=cosx; y=-;- for x=0.

2881. y' —2y =— x*, y:% for x=0.

2882. y'+y=2x, y=—1 for x=0.

2883. xy' =y, a) y=1 for x=1; b) y=0 for x=0.

2884. 2xy' =y, a) y=1 for x=1; b) y=0 for x==0.

2885. 2xyy’ +x'—y*=0; a) y=0 for x=0; b)y=1 for x=0;
c) y=0 for x=1.

2886. Find the curve passing through the point (0, 1), for
which the subtangent is equal to the sum of the cooidinates of
the point:.of tangency.

2887. Find a curve if we know that the sum of the segments
cut off on the coordinate axes by a tangent to it is constant and
equal to 2a.

2888. The sum of the lengths of the normal and subnormal
is equal to unity. Find the equation of the curve if it is known
that the curve passes through the coordinate origin.

2889*. Find a curve whose angle formed by a tangent and the
radius vector of the point of tangency is constant.

2890, Find a curve knowing that the area contained between
the coordinate axes, this curve and the ordinate of any point on
it is equal to the cube of the ordinate.

2891. Find a curve knowing that the area of a sector boun-
ded by the polar axis, by this curve and by the radius vector
of any point of it is proportional to the cube of this radius
vector.

2892. Find a curve, the segment of which, cut ofl by the
tangent on the x-axis, is equal to the length of the tangent.
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2893. Find the curve, of which the segment of the tangent
contained between the coordinate axes is divided into half by
the parabola y* = 2x.

2894. Find the curve whose normal at any point of it is
equal to the distance of this point from the origin.

2895*. The area bounded by a curve, the coordinate axes,
and the ordinate of some point of the curve is equal to the
length of the corresponding arc of the curve. Find the equation
of this curve if it is known that the laiter passes through the
point (0, 1).

2896. Find the curve for which the area of a triangle formed

by the x-axis, a tangent, and the radius vector of the point of
tangency is constant and equal to a®.

2897. Find the curve if we know that the mid-point of the

segment cut off on the x-axis by a tangent and a normal to the
curve is a constant point (a, 0).

When forming first-order differential equations, particularly in physical
probleins, it is frequently advisable to apply the so-called method of differen-
tials, which consists in the fact that approximate relationships between
infimitesimat increments of the desired quantities (these relationships are
accurate to infinitesimals of higher order) are replaced by the corresponding
relationships between their differentials. This does not affect the result.

Problem. A tank contains 100 hires of an aqueous solution containing
10 ke of salt, Water i1s entering the tank at the rate of 3 litres per minute,
and the mixlure is flowing out at 2 litres per minute. The concentiration is
maintained umform by stirring. How much salt will the tank contain at the
end ol one hour?

Solution. The concentration ¢ of a substance is the quantity of it in
unit volume. 1f the concentration is uniform, then the quantity of sub-
stance in volume V is ¢V.

Let the quantity of salt in the tank at the end of ¢ minutes be x kg.
The quantity of solution in the tank at that instant will be 1004-¢ litres,

X .
m kg per litre.

During time di, 2d! litres of the solution flows out of the tank (the
solution contains 2cdi kg of salt), Therefore, a change of dx in the quantity
of salt in the tank is given by the relationship

2¢
—"d.!:26 dt:m dt.

This is the sought-for differential equation. Separating variables and integrat-
ing, we obtain

and, consequeitly, the concentration ¢=

Inx=—2In(l004t)+InC
_C
(10040’

The constant C is found from the fact that when f=0, 1+ =10, that is,
C=100,000. At the expiration of one hour, the tank will contain

or
b4

X==——=— 3.9 kilograms of salt,
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2898*. Prove that for a heavy liquid rotating about a vertical
axis the free surface has the form of a paraboloid of revolution.

2899*, Find the relationship between the air pressure and the
altitude if it is known that the pressure is 1 kgi on 1 ecm?® at
sea level and 0.92 kgi on 1 cm® at an allitude of 500 metres.

2900*. According to Hooke’s law an elastic band of length
! increases in length klF (k=const) due to a tensile force F.
By how much will the band increase in length due to its weight
W if the band is suspended at one end? (The initial lenglh of
the band is {.)

2901, Solve the same problem for a weight P suspended from
the end of the band.

When solving Problems 2902 and 2903, make use of Newton's
law, by which the rate of cooling of a body is proportional to the
difference of temperatures of the body and the ambient medium,

2902, Find the relationship between the temperature T and
the time ¢ if a body, healed to T degrees, is brought intio a room
at constant temperature (a degrees).

2903. During what time will a body heated to 100° cool off
to 30° if the temperature ol the room is 20° and during the first
20 minutes the body cooled to 60°?

2904. The retarding action of friction on a disk rotating in
a liquid is proportional to the angular velocity ol rotation. Find
the relationship between the angular velocity and time il it is
known that the disk began rotating at 100 rpm and after one
minute was rotating at 60 rpm,

2905*. The rate of disinlegration of radium is proporiional
to the quantity of radium present. Radium disinfegraies by one
half in 1600 years. Find the percentage of radium that has disinte-
grated after 100 years.

2906*. The rate of outflow of water from an aperfure at
a vertical distance A from the free surface is defined by the

formula L
v=c}/ 2h,

where ¢~ 0.6 and g is the acceleration of gravity.

During what period of time will the water filling a hemi-
spherical boiler of diameter 2 metres flow out of it through a cir-
cular opening of radius 0.1 m in the bottom.

2907*. The quantity of light absorbed in passing through
a thin layer of water is proportional to the quantily of incident
light and to the thickness of the layer. If one half of the original
quantity of light is absorbed in passing through a three-metre-
thick layer of waler, what part of this quantity will reach a depth
of 30 metres?
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2908*. The air resistance to a body falling with a parachute
is proportional to the square of the rate of fall. Find the limit-
ing velocity of descent.

2909*. The bottom of a tank with a capacity of 300 litres
is covered with a mixture of salt and some insoluble substance.
Assuming that the rate at which the salt dissolves is proportion-
al to lthe diflerence between the concentration at the given time
and the concentration of a saturated solution (1 kg of salt per 3
litres of water) and that the given quantity of pure water dis-
solves 1/3 kg of salt in 1 minute, find the quantity of salt in solu-
tion at the expiration of one hour.

2910*. The electromotive force e in a circuit with current i,
resistance R and self-induction L is made up of the voltage drop

Ri and the electromotive force of self-induction L%. Determine

the current i at time f if e==Esinw! (E and o are constants)
and i =0 when =0,

Sec. 10. Higher-Order Differential Equations

1°. The case of direct integration., If

g =f (1),
then

y=S dx g Sf{.\}dx-}— Cx"" V4 Cx*=34-...4C,.

\-—.-.—...\_..——-'
i hmes

2°. Cases of reduction of order. 1) If a dilerential equation does not
contain y explicitly, for instance,

F(x, ¢y, y)=0,

then, assuming y'=p, we get an equation ot an order one umt lower:

Fix, p, p'Yy=0.
Example [. Find the particular solution of the equation
xy' +y' +x=0,

that satisfies the conditions
y=0, y'=0 when x=0,
Solution. Putting y’=p, we have y"=p’', whence
xp'+p+x=0,

Solving the latter equation as a linear equation in the function p,
we get "

P-"=Cl“?-
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From the fact that y'=p=0 when x=0, we have 0=C,—0, i.e., C,=0.
Hence,

-
P=—3%
or
4y K
d« 2"
whence, integrating once again, w2 obtain
x!
Yy=—7 - Cy

Putting y=0 when x=0, we lind C,=0. Hence, the desired particular
solution is

- i 2
y= —?x .
2) If a differential equation does not contain x explicitly, for instance,
Fly, ¥ y)1=0

then, putting ¥y’ =p, y":p%. we get an equation of an order one unit

lower:

d
F (yl p! p E"g):_o.

Example 2. Find the particular solution of the equation

vy —y'i=y
provided that y=1, ' =0 when x=0.

Solution. Put ¢’ =p, then y"=p§-§ and our equation becomes

dp . i
. = ",
yp dy P £

We have obtained an equation of the Bernoulli type in p (y is considered
the argument). Solving it, we find

p=+y VC,+ i~
From the fact that y'=p=0 when y=1, we have C,= — 1. Hence,

p=+y Vyi—Ii
ar

dy _ 7]
= +y VU L.
Integrating, we have

arc cos Ti- + x= C,.

Putting y=1 and x=0, we obtain C,=0, whence %=cosx or y=sec x.
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Solve the following equations:

2011, o' = 2020. 4y =y4'y + ",

2912. y”=—%,—. 2021, yy' —y (1 4 y)=0.

2913, y"=1—y"". 2922, y"=—§.

2914. xy" | y' =0. 2923. (x+ D)Y'—(x+2)y +x+

+2=0.

2915, yy' =y". 2924, xy' =y’ ln%.

2016. yy" +y" =0. i b o

2017, (1 Fx')y" +y ' +1=0, 2925. ¢+ =xy.

2018. ¢’ (1 + y'*)=ay". 2926. xy'" +y' =1+ x.

2019. x*y" -+ xy =1. 2027. ¢ + 4y =1.

Find the particular solutions for the indicaled initial con-
ditions:

2028, (14+x)y"—2xy'=0; y=0, y' =3 for x=0,

2929, 14y =2y" y=1, ¢y'=1 for x=1.

2930. yy”-I—y‘:::y’s: Y= ], y’=l for x=0.

2931. xy'=y', y=0, y'=0 for x=0.

Find the general integrals of the following equations:

2932,

2933.
2934.
2935.

Find

2036.
2937.
2938.
2939.

2940.

2941,
2942.
2943.

2944

g =Vii+yy—yy.
w' =y -y Vot
Y —yy'=y'y.

gy’ +y —y” Iny=0.

yy'=1 y=1, y' =1

for x=l.

solutions that salisfy the indicated conditions:

2

gyt =1, g=I1, y=1 loi x=0
xy”=|/l +y''s y=0 for x=1; y=1 for x=e¢".
y”(l+lnx)+%-y'=2+1nx;y=%, y=1tor x=1,

g":‘—f(wini—'); y==, y'=1 for x=1.
y—y' ' +y (y—1)=0; y=2, y'=2 for x=0.

3y =y+y '+l y=—2, y=0 for x=0.

¥ +y =29y =0; y=1, y'=1 for x=0.
'+ Y +yy=0; y=1 for x=0and y=0 for x=—1.
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2045. 2y’ +(y''—6x)-y"=0; y==0, y' =2 for x=2.
2046. y'y'+yy"—y =0; y=1, y’' =2 for x=0.
2047. 2yy"—3y ' =4y*;, y=1, y'=0 for x=0.
2948, 2yy" -y —y ' =0; y=1, y' =1 for x=0.
2049, ' =y —y; y= —--}-, y’:% for x=1.

2950, y"-‘-%f?"a{f‘—zw'a=0; y=1, y=e for x:= v-gl;.
2051. 14-yy" +y"=0; y=0, y'=1 for x=1.

2952. (1+yy) ' =(+y")y; y=1, y=1 for x=0.
2053, (x+ Dy +xy" =y y=—2, y' =4 for x=1.
Solve the equations:

2954, y' =xy"" -+ y".

2055. y' =xy" +y —y".

2956. y''" =4y,

2957. yy'y” =y’ +y"". Choose the integral curve passing through
the point (0, 0) and tangent, at it, to the slraight line y+x=0.

2958. Find the curves of constant radius of curvature.

2959. Find a curve whose radius of curvature is proportional
to the cube of the normal.

2960. Find a curve whose radius of curvature is equal to the
normal.

2961. Find a curve whose radius of curvature is double the
normal.

2962. Pind the curves whose projection of the radius ol cur-
vature on the y-axis is a consiant.

2963. Find the equation of the cable of a suspension bridge
on the assumption that the load is distributed uniformly along
the projection of the cable on a horizontal straight line. The
weight of the cable is neglected.

2964*. Find the position of equilibrium of a flexible nonten-
sile thread, the ends of which are attached at iwo points and
which has a constant load g (including the weight of the thread)
per unit length.

2965*. A heavy body with no initial velocity is sliding along
an inclined plane. Find the law of motion if the angle of incli-
nation is a, and the coefficient of friction is p.

l (Hint. The frictional force is uN, where N is the force of reaction of the
plane.)

2966*. We may consider that the air resistance in free fall
is proportional to the square of the velocity. Find the law of
motion if the initial velocity is zero..
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2967*. A motor-boat weighing 300 kgf is in rectilinear motion
with inijtial velocity 66 m/sec. The resistance of the water is pro-
portional to the velocity and is 10 kgf at 1 metre/sec. How long
will it be before the velocity becomes 8 m/sec?

Sec. 11. Linear DiHerential Equations

1°. Homogeneous equations. The functions gy, =@q,(x), v,=q,(x), ...
v« s Yu =@n (x) are called lineorly dependent il there are constants C,, C,, ..
not aﬂ equal to zcro, such that

Cin+Cyy+... +Cy,=0;

otherwise, these functions are called linearly tndependent.
The general solution of a homogeneous linear differential equation

yM 4P () y V4 L 4P, (x)y=0 (1)
with continuous coefficients P;(x) (i=1, 2, ..., n) 1s of the form

y=Cyun+Cuy,+ ... 4+Cy,,

where 4y, Yy ..., i, are linearly independent solutions of equation (1)
(fundamenlal system of soluftons).

2°, Inhomogeneous equatiions. The general solution of an inhomogeneous
ltnear differential equation

"y n

PP+ PU) YT L Py () g =] () @)
with continuous coelficients P;(x) and the right side f(x) has the form
y=y,+Y,

where y, is the general solution of the corresponding homogeneous equation (1)
and Y is a particular solution of the given inhemogeneous equation (2).

If the fundamental system of solutions y,, g, ..., ¥, ol the homogeneous
equation (1) is known, then the gencral solution of the corresponding inho-
mogeneous equation (2) may be found from the formula

y=C, () y, +Ci (X) yg+ ... +C, (x} yp,,

where the functions C;(x) {(i=1, 2, ..., n) are determined from the follow-
ing system of equations:

C,NH+Ci(ys  +...+Cy 0y, =0, ‘
C,wWy+C, (Y,  +...+Cr{Vy, =0,
......... [ )
C, My +C )" 4+ C ) g TV =0,
Cowy ™ N +C T+ +C =)

(the method of variation of paramelers).
Example. Solve the equation

xy'+y =x% (4)
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Solution. Solving the homogeneous equation

Xy +y =0,
we get
y=C;Inx+4C,. (5)
Hence, it may be taken that
y;=Inx andy,=1

and the solution of equation (4) may be sought in the form

y=C, (x) Inx+C, (x).
Forming the system (3) and taking into account that the reduced form of
the equation (4) is y”-{—%—=x, we obtain

C; (%) lnx+C; (x) 1 =0,

! 1 r

Ci) —+C, (0 0=1x.

Whence
3
C (x =§+A and C,(x)=—§lnx+%+ﬁ

and, consequently,

y=—';:—|—A inx+ B,
where A and B are arbitrary constants.

2968. Test the following systems of functions for linear rela-
tionships:

a) x, x+1; e) x, x", x%

b) x*, —2x% i) e*, e**, 2'%;

c) 0, 1, x; g) sinx, cosx, I,
d) x, x+1, x+2; h) sin®x, cos’x, 1.

2969. Form a linear homogeneous differential equation, know-
ing its fundamental system of equations:

a) y,=sinx, y,=cosx;

b) y, =e* y,=xe",

C) Y, =X, Yy=24x",

d) y,=¢€* y,=e"sinx, y,=e" cosx.

2970. Knowing the fundamental system of solutions of a linear
homogeneous diflerential equation

Y, =X, y:=xtv y,=.1c',
find its particular solution y that satisfies the initial conditions

y|x=:=0* y’

x=1 —1, y"|x=|=2‘
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2971*. Sclve the equation
2 .

knowing its particular solution y,=w.

X
2972, Solve the equation
S(lnx—=Dy' —xy +y=0,

knowing its particular solution y, =x.

By the method of variation of parameters, solve the following
inhomogeneous linear equations.

2978, x'y"—xy' =3x°,

2974*. X'y + xy' —y=1x".

29753. Yy +y == secx.

Sec. 12. Linear Differential Equations of Second Crder
with Constant Coefficients

1°. Homogeneous equations. A second-order lincar equation with constant
coeflicients p and ¢ without the right side s of the form

y"+py' +qy=0 (h
1f k, and &, are roots of the characteristic cquation
q (k) =k*+pk+q9=0, (2)

then the gencral solution of cquation (1) is written in one of the following
three ways:

1) y— Ce"*+-Ce** if k, and k, are real and k, 5 k,;
2) y =% (Cy+Cypx) il ky==ky;
3) y =™ (Cycos Px—+C,smPa) il ky=a+pt and k,=a—ft (P £ 0).

2°, Inhomogeneous eyualions. The general solution of a linear inhomoge-
neous differential equation

y'-+py' +qy =f(x) (3)
may be written in the form of a sum:

Yy=yo+Y,

where y, is the general solution of the corresponding equation (1) without
right side and delermined from formulas (1) to (3), and Y is a particular
solution of the given equation (3).

The function ¥ may be found by the method of undetermined coelficients
in the following simple cases:

1. f(x)=e**P,(x), where P, (x) is a polynomial of degree n.

If ais pot a root of the characteristic equation (2), that is, ¢ (a) # 0,

then we put Y =e"* Q, (x) where @Q,(x) is a polynomial of degree n with
undetermined coefficicnts.

I o 1s a root of the characleristic equation (2), that is, ¢ (a)=0, then
Y=x"¢"*Q, (x), where r is the multiplicity of the root a(r=1 or r=2).
2, f(x)=e€%% [P, (x) cos bx+ Q, (%) sin bx].
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If o(a + bi) #0, then we put
Y =e%* [Sy (x) cos bx T (x) sin bx],

where Sy (x) and Ty (x) are polynomials of degree /N-max {n, m},
But if @ (¢ £ bi)=0, then

Y =x"e®* [Sp (x) cos bx 4 T (x) sin bx],

where » is the multiplicity of the roots a & & (for second-order equations,
r= l)

In the general case, the method of variation of parameters (see Sec. 11)
is used to solve equation (3).

Example 1. Find the general solution of the equation 2y"—y’—y=4xe**.

Solution. The characteristic equation 24*—k—1=0 has roots &,=1 and

Ry= The general solution of the corresponding homogeneous equation

L
7 -
X

(first type) is :;.,=Ce"+cze-_’-. The right side of the given equalionisf (x)=
=4 xe** =P, (X). i"lence. Y =e** (Ax+ B), since n=1 and s =0, Dilleren-
tiating ¥ twice and putting the derivatives into the given equation, we
obtain:

%% (4Ax+ 4B + 44) —e2* (24x 428 + A)—e** (Ax - B) = dxe®*.

Cancelling out ¢** and equating the coefficients of identical powers of x and
the absolute terms on the left and right of the equality, we have 54 =4 and

4 28
7A 4-58 =0, whence A:-=—5- and Bﬂ——ﬁ-.
Thus, Ye** (-g- x——g—g) , and the general solution of the given equation 1s
1
3 q 28
= C.e* C 2 L4 S T
y=Ce*+Ce * e (5x 25).

Example 2. Find the general solution of the equation §*"—2y"4-y=xe®.

Solution. The characteristic equation £*—2k+41=0 has a double root
k=1 The righl side of the equation is of the form f(x)=xe*, here, a=1|
and n=1. The particular solution is ¥ =x%* (Ax 4 B), since a coincides wdth
the double root 2=1 and, consequently, r=2.

Difterentiating Y twice, substituting into the equalion, and equating the

coelficients, we obiain A==%, B=0. Hence, the genecral solution of the given

equation will be written in the form

y={C,+C,x}E"‘+%x’e".

Example 3. Find the general solution of the equation y” 4 y=x sin x.

Solution. The characteristic equation k*41=0 has roots %k,=i and
k,= —t. The general solulion of the corresponding honiogeneous equation
will |see 3, where a=0 and f=1) be

yo=0C, cos x4 C, sin x.

The right side is of the form
[ (x)=e%* [P, (x) cos bx 4 Q, (x) sin bx],
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where a=0, 6=1, P,(x)=0, Q, (x)=x. To this side there corresponds the
particular solution Y,

Y =x[(Ax+} B) cos x4 (Cx - D) sin x]

(here, N=1}, a=0, b=1, r=1).

Differentiating twice and substituting into the equation, we equate the
coelficients of both sides in cosx, xcosx, sinx, and xsinx. We then get four
equations 24 4+ 2D =0, 4C=0, —2B+2C=0, —4A =1, from which we deter-

.4
mine A:—-T, B=0, C=0, Dzé. Therefore, ¥V = --%-cosx-i-%slnx.
The general solution is
2

y=C,cosx4C, sinx—-%cos x»{——:— sin x,

3°. The principle of superposition of solutions. If the righf side of equa-
tion (3) is the sum of several funct:ons

fY=FH) 4+ ()4 +Fa (%)
and Y;(i=1, 2, 3, ..., n) are the corresponding solutions of the equations
g 4+py' +ey=fix) (i=1 2, ..., n),
y—_-Y‘+Y,+,,.+Yn
is the solution of equation (3).

then the sum

Find the general solulions of the equations:

2976. y"—5y' + 6y =0, 2982. ¥y + 2y'+y=0.
2977. y"—9y=0. 2983. y'—4y' +2y=0.
9978. ' —y =0. 2984. y” + ky=0.

2979. y' +y=0. 2085. y=1y"+y'.

2980. ' — 2y +2y=0. Y —y

2081. y" -+ 4y + 13y =0. 2086, ~—= =3.

Find the particular solutions that satisfy the indicated condi-
tions:

2987. y'—0by +4y=0; y=05, y'=8 for x=0

2088. ¥ + 3y +2y=0;, y=1, y=—1 Tor x=0.
2989. y" +4y=0, y=0, y' =2 for x=0.

2090. " +2y'=0;, y=1, y=0 for x=0

2991. y”:%; y=a, y'=0 for x=0.

2992. " +3y =0. y=0 for x=0 and y=0 for x=3.
2993. y" + n'y=0; y=0 for x=0 and y=0 lor x=1.

2994. Indicate the type of particular solulions for the given
inhomogeneous equations:

a) yn_4y ___x:e:x;
b) y" + 9y = cos 2x;

12—1900
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¢) y'—4y’ +4y = sin 2x 4 €'*;

d) ¥+ 2y’ + 2y =e* sin x;

€) i —5y’ + 6y = (x*+ 1) &* + xe*%;

) y"—2y’ 4 by = xe* cos 2x— x*e* sin 2x.

Find the general solutions of the equations:

2995.
2996.
2997.
2998.
2999.
3000.
3001.
3002.
3003.
3004.
3005.
3006.

satisfies

y'—4y' 44y = x*.

Yy —Yy +y=x'+6.

Yy +2y +y=e’.

Yy —8y +Ty=14.

Yy —y=e.

y" +y=cosx.

Yy 4y —2y =8 sin 2x,
y"+y'—ﬁy=4\.’8’x.

y"—2y’ 4-y = sin x4 sinh x.
y' 4+ y' = sin® x.

y'—2y" + by =e”* cos 2x.
Find the solution of the equation y"+4y=sinx that

the conditions y=1, y'=1 for x=0.

Solve the equations:

3007.

2) p=a.
3008.
3009.

3010.

3011.
3012,
3013.
3014.
3015.
3016.

3017.

3018.
3019.

%;::'i"m!x: A sin pt. Consider the cases: 1) p+# o;

y#___-‘-;ya + 12y= ___edx'
y'—2) =x'—1.

Yy —2y" +y=2e”,

Yy —2y' =e**+5.

y' —2y —8y=e*—8cos 2x.
Y ity =bx+ 2.

y'—y =2x—1—3e*.
Y42y +y=e*4e "

Yy —2y" 4 10y = sin 3x +-e”*.
Y'—4y + 4y =2"+ 5.
y'—3y’ = x4 cos x.

Find the solution to the equation ' —2y" =e** 4+ x"—1

that satisfies the conditions y=%, y'=1 for x=0,
Solve the equations:

3020.
3021.
3022,
3023.
3024.
3025.

Yy —y=2xsinx,

Yy —4y=e"* sin 2x.

Yy +4y=2sin2x—3 cos 2x+ 1.
Y —2y" + 2y = 4e”* sin x.

Y =xe*+y.

Y + 9y = 2x sin x + xe*”.
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3026. y'—2y"'—3y=x(1 +¢€*").

3027. y'—2y’ =3x+ 2xe”,

3028. y'—4y’ + 4y = xe*”.

3029. y"+ 2y’ —3y=2xe"**+ (x4 1)e*,

3030*. & + y=2x cos x cos 2x,

3031, y'—2y=2xe* (cos x—- sin x).

Applying the method of variation of parameters, solve the
following equations: |

3032. y"' +y—tanx. 3036. 4" +y=—_—.

3033. 4" +y=cot x. 3037. 4 +y=_—. |
3034. y'—2y +y=". 3038. 2) y’—y=tanh x.
3035. ¥ +2y" +y= E'T_x. b) ¢" —2y = 4x%e*.

3039. Two identical loads are suspended from the end of a
spring. Find the equation of motion that will be pérformed by
one of these loads if the other falls.

Solution. Let the increase in the length of the spring under the action
of one load in a state of rest be @ and the mass of the load, m. Denote by x
the coordinate of the load reckoned vertically from the position of equilib-
rium in the case of a single load. Then
d*x

md—F:mg-—k (x4 a),

where, obviously, kzm?g and, consequently, %}::-% x. The general =olu-
tion is x=C, cos ]/%t+€, sin V -E—t. The initial conditions yield x=u
and $=O when ¢ =0; whence C,=a and C,=0; and so

X=acos ]/—g- t.
a

3040*. The force stretching a spring is proportional to the
increase in its length and is equal to | kgf when the length
increases by 1 em. A load weighing 2 kgf is suspended from the
spring. Find the period of oscillatory motion of the load if it
is pulled downwards slightly and then released.

3041*. A load weighing P=4 kgf is suspended from a spring
and increases the length of the spring by 1 c¢m. Find the law
of motion of the load if the upper end of the spring performs
a vertical harmonic oscillation y=2sin30¢f cm and if at the

initial instant the load was at rest (resistance of the medium is
neglected). o :

12*
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3042. A material point of mass m is attracted by each ol two
centres with a force proportional to the distance (the constant
of proportionality is k). Find the law of motion of the point
knowing that the distance between the centres is 2b, at the ini-
tial instant the point was located on the line connecting the
centres (at a distance ¢ from its midpoint) and had a velocity
of zero.

3043. A chain of length 6 metres is sliding from a support
without friction. If the motion begins when | m of the chain
is hanging from the support, how long will it take for the entire
chain to slide down?

3044*. A long narrow tube is revolving with constant angular
velocity @ about a vertical axis perpendicular to it. A ball in-
side the tube is slidinz along it without iriction. Find the law
of motion of the ball relative to the tube, considering that

a) at the initial instant the ball was at a distance a from
the axis of rotation; the initial velocity of the ball was zero;

b) at the inijtial instant the ball was located on the axis of
rotation and had an initial velocity v,.

Sec. 13. Linear Differential Equations of Order Higher than Two with
Constant Coefficients

1°, Homogeneous equations. The fundamental system of solutions y,,
Vs .- Yp Of 2 homogeneous linear equation with constant coefficients

Y +ay'" V. a,y +ay =0 H

is constructed on the basis of the character of the roots of the characterisiic
egualion

R +a, k" '+ ... +a,_k+a,=0. (2)

Namely, 1) if & is a real root of the equation (2) of multiplicity m, then to
this root there correspond m linearly independent solutions of equation (1):

ylzek"‘, g,=xe’"‘, : Ss y,,,=x"'"ek";
2) if a 4 Bl Is a pair of complex roots of equation (2) of multiplicity m,

then to the latter there correspond 2m linearly independent solutions of
equation (1):

y;=e"* cos fx, y,=e" sinPx, y,=xe* cos fx, y,—=xe™* sinPx, ...

vovs Yamay =X"7 ™ cos Px, Yyu=x™"1e"*sin Px.

2°, Inhomogeneous equations. A particular solution of the inhomogeneous
equation

Y4y 0 ta,y ay = (%) (3)
is sought on the basis of rules 2° and 3° of Sec. 12.
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Find the general solutions of the equations:
3045, y'"'—13y" +12y'=0. 3058. y'V 424" +y=0,

3046. y”’——y’=0. n n m 1

3047. y”,_l_y:g. 3059 yll }_l_

3048. y'vV—2y" =0. n "(" -1 g L+
3049. y'"' —3y" + 3y’ —y=0. L2

3050. y!V 44y =0. +2 g y=0.

3051' yfv *8 ”+ 16 =0- tre "
30562, y"’—}-y?: 0. J 3060. y/V—2y""' +y" =e*.

3053. y'¥—2y" +y=0. 3061. y'V —2y"" -y’ = ',
8954, y'V—a'y=0. ggg‘g’ v :yfx -*}*-
301‘5. '”)"_6 * — U, ’ yrr: yn == 05 44,
3056, 51V 1 alyr 0, 3065 5" 1 3 1 4 Lyren
€ Fav ey om - y “i"‘y y y=xe .
057, %52y~ ur =0, 3066. ' +y =tanxsecx,
3067. Find the particular solution of the equation

yu! +2yn +2yr +y:x

that satisfies the initial conditions y (0)=y’ (0) =y" (0) ==0.

Sec. 14. Euler’s Equations

A linear equation of the form
(ax +0) "y 4- A, (ax L 6"~y "0 L+ A, lax DYy A+ Ay =F (x), (1)

where a, b, A,, ..., 4,_,, A, are constants, 1s called Euler's equation.
Let us introduce a new independent variable £, putting
ax+b =¢.
Then
—1 4y dy dy
r__ i) LA -2t _—

3 2
g’ =a%e~t (%% {fﬂti !_zdu) and so ferth

and Euler's equation is transformed into a linear equation with constant

coeflicients.
Fxample 1. Solve the equation x%y"+xy'ty=1.
Solution. Putling x=¢f, we get

dy -1y du o (A dv)

ax ¢ ar d ¢ \deT iy
Consequently, the given equatio: takes on the form
d!
d:=+y L
whence
y=C,cost+C,slnt41
or

y=0C, cos (Inx) 4+ Cysin (In x) + 1.
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For the homogeneous Euler equation

My® L A x=lyn=0 L A, xy’+Ay=0 (2)

the solution may be sought in the form
y y=x*. (3)
Putting into (2) v, ¢', ..., y'™ found from (3), we get a characteristic equa-

tion from which we can find the exponent &.
If k is a real root of the characteristic equation of multiplicity m, then to it
correspond m linearly independent solutions

=28 gy=xtnx, gu=22(n 23, ooy ga=2"(lnx)"=",

If « £ Pi is a pair of complex roots of multiplicity m, then to it there
correspond 2m linearly independent solutions

y,-x *cos (P Inx), y,=x"sin (P Inx), yy=x"Inxcos (f Inx),
Ya=x%Inx:sin(BInx), ..., Yoy =x"(Inx)”"* cos (P In x),
Yo = x" (In x)® = sin (P In x).

Example 2. Solve the equation
x*y" —3xy’ 4 4y =0,
Solution. We put
y=xF y =kF", yP=k(k—1)x*"2

Substituting into the given equation, after cancelling out x*, we get the
characteristic equation

RZ2—4k+4-4=0.
Solving it we find
ky=ky,=2,

Hence, the general solution will be
y=Cx* 4+ Cyx*In x.

Solve the equations:
3068. x* 9% 4 3x % 4 y—0,

dx*®
3069. x*y" —xy —3y-0.
3070. x* "-l— xy' +4y=0.
3071. x*y""" —3x'y" +6xy' —6y =0,
3072. (3x+2)y”+?y =10,

3073. y'==4

3074. y'+L +~"' =0.
3075. x'y ——4xy + 6y = x.
3076. (1 +x)"y"—3(1+x)y +4y=(1 +x)'.
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3077. Find the particular solution of the eqiiation
Xy —axy +y=2x
that satisfies the initial conditions y=0, ¥’ =1 when x=1.

Sec. 15. Systems of Differential Equations

Method of elimination. To find the solution, for instance, of a normal
?ystem of two first-order differential equations, that is, of a system of the
orm

d d
&%zf(x1 4 2), Ez=g(x' Yy, 2), (”

solved for the derivatives of the desired functions, we differentiate one of
them with respect to x. We have, for example,

dy of  of , of
o tayl ta (2)

Determining 2 from the first equation of the system (1) and substituting the
value found,

d
z=¢(x. Y, Ey) 3)

into equation (2), we get a second-order equation with one unknown funec-
tion y. Solving it, we find

y=v(x, Cy, Cy), (4)

where C, and C, are arbitrary constants, Substituting function (4) into for-
mula (3), we determine the function z without new integrations. The set of
formulas (3) and (4), where y is replaced by 1+, yields the general solution
of the system (1).

Example. Solve the system

dy _
d-—x+2y+4z—l+4x.
dz 3
a;‘l-y—z——g X,

Solution. We differentiate the first equation with respect to x:

d*y dy dz

From the first equation we determine z=-l- ( 1+4x—%—-2y) and then

4
. dz2_ 3 , 1" 3  ldy _
from the second we will have =" + x4 T3V T I Putting =2
and g—z into the equation obtained after differentiation, we arrive at a secorde

order equation in one unknown y:

d’y , dy — 2
dx’+dx by = — 6x*—4x 4 3.
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Solving it we find:
y=0Ce* 4 Ce™ ¥ 4 x*+x,
and then

____1_ dy _ ar i Cy 1
2= ( 1+4x—a—-2y)_—C,e +—4-e "——g—x’.

We can do likewise in the case of a system with a larger number ol
equations.

Solve the systems:

dy dy
—=2 —-+3y+42=21.
3078. { & 3085. { >
| &= Y PR A
.%=y+52, y=0, z=0 when x=0.
3079 dx
a2 _ Y 4y 4361 =0,
1 ax Ty+32=0. 3086. { o
[ dy 3y —z £+2x——y+2e!=0,
d — ]
3080. § x=0, y=1 when {=0.
Lot dy _ o*
dx de  z°
(‘zﬂ=9’ 3087. “_1
de~ 2
3081. { 5=z, PR
" S (.
-43'=x 3088%. a) x4 3xy? 28T 24%2°
¢ dt ) dx _....di—dz
dx x—y_x+y__z_'
(d[—_y-i-z, ¢) dx _ dy  dz
dy y—z z—x  x—y
3082, { == " . .
T isolate the integral curve pas-
%‘;=x+y- sing through the point (1, 1, —2).
“ dy , , _
£=y+z, aosg, | #7270
3083. { N2,
d-——x=x+y+z. a%—?y— nux.
ji:+2y+z=sinx, %%4—2!!-{-42“:8”.
3084. dz 30900 dzz
1-——4 — 22 =C0s X. S Y—d=—x
dx Y dei Y |
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3091**. A shell leaves a gun with initial velocity v, at an
angle o to the horizon. Find the equation of metion if we take
the air resistance as proportional to the velocity.

3092%. A material point is attracted by a centre O with a
force proportional to the distance. The motion begins from point A
at a distance a from the centre with initial velocity v, perpen-
dicular to OA. Find the trajectory.

Sec. 16. Integration of Differential Equations by Means of Power Series
If it is not possible to integrate a differential equation with the help of

elementary functions, then in some cases its solution may be sought in the
form of a power series:

c,, (x—x,)2 (1)

|
HMS

The undetermined coefficients ¢, (n=1, .} are found by putting the
series (1) into the equation and equating the ‘coefficients of identical powers
of the binomial x—x, on the left-hand and right-hand sides of the resulling
equation,

We can also seek the solution of the equation

T=f(x ) Y (xg) =y, (2)
in the form of the Taylor's series
{n)
ye) = Z" Bl (rmryt, @

where y(x)=y, U (x;)=F[(x, y,) and the subsequent derivatives y'™ (x,)
(n=—2, 3, ...) are successively found by diffcrentiating equation (2) and by
putting x, in place of x
Example 1. Find the solution of the equation
y'—xy=0,
if y=y, v’ =y, for x=:0,
Solution. We put

Yy=Co4C x4 ... Fcx% 4 ...,
whence, differentiating, we get

Y =2:1c,+3:20x 4 ... Fn(n—1)c,x" "+ (n+ 1) nc,y 4 x" =1 -
F+(n+2) (n+ 1) 62"+ .00
Substituting ¥ and y* into the given equation, we arrive at the identity
[2-1cg+3:2c5x+ ... Fnln—1)c,x" "2+ (n+ D ne, . (X"
F+r+2y(n+ eyt ] —x gt ex+ .o Fepx"4-..] =0,

Collecting together, on the left of this equalion, the terms with identical
powers of x and equaling lo zero 1ilhe coellicienis of these powers, we will
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have
C c
cg=0; 3:2¢c,—cy=0, c,=§-j12-; 4.3c,—¢,=0, c‘=4—_'§: 5.4c,—¢, =0,
.
6=z and so forth,
Generally,
Cap == Co C, = i
% 2.3.5.6....-(3k—1) 3k’ W1 34.6.7-...-3k (Bk+ 1)
C’k+a=0 (k=l, 2| 3, oto)-
Consequently,
P x8 x’k
yzc"(l+2-3+2-3-5-6+"'+2-3-5-6-...-(3k——l)3k+"')+
%7 xlkq—l

x*
T ("+3-4+3-4

where ¢,=y, and ¢, =y,.

Applying d’Alembert's test, it is readily seen that series (4) converges
for — o0 < x <+ 0.

Example 2. Find the solution of the equation
y'=x+4 Y=y 0)=1

T 7% s 3-4-5.7....-3k(3k+n+"‘)' )

Solution. We put

" (YL

Y y
Y=Yo+ Yt +5r ¥+ = £+

We have y,=1, y;=0+l=l. Differentiating equation y’=x 4y, we succes-
sively find y"=1+y', y,=14+1=2, ¥y’ =y, y,"' =2, etc. Consequently,

— 2 2,2 ,
y~1+x+2’x+3lx+...

For the example at hand, this solution may be written in final form as
y=14+x+4+2*—1—x) or y=26*—1—x.

The procedure is similar for differential equations of higher orders. Test-
ing the resulting series for convergence is, generally speaking, complicated
and is not obligatory when solving the problems of this section.

With the help of power series, find the solutions of the equa-
tions for the indicated initial conditions.

In Examples 3097, 3098, 3099, 3101, test the solutions
obtained for convergence.

3093. y' =y+x', y=—2 for x=0.
3004. y'=2y+x—1; y=y, for x=1.
3095. y' =y*+ x*; y=—;- for x=0.

3096. y' =x*—y*; y=0 for x=0.

3097. 1—x)y’'=1+x—y;, y=0 for x=0,
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3098*. xy"+4-y=0; y=0, y’=1 for x=0,
3099. " +xy=0; y=1, y’' =0 for x=0,

3100%. y"+2 4’ +y=0; y=1, y’ =0 for x=0.
3101*, y"—}--.i—y'-}-yﬁ_—.(), y=l, y’=0 for x=0.

d3x 3 . dx _
3102, a—;—[—xcost:ﬂ. x=a, EE‘O for t=0.

Sec. 17. Problems on Fourier's Method

To find the solutions of a linear homogeneous partial differential equation
by Fourier’s method, first seek the particular solutions of this special-type
equation, each of which represents the product of functions that are dependent
on one argument only. In the simplest case, there is an infinite set of such
solutions u, (n=1, 2,...), which are linearly independent among themselves
in any finite number and which satisfy the given boundary condifions. The
desired solution u is represented in the form of a series arranged according

to these particular solutions:
ke o]
u=Y" Cyup. (1)
n=li

The coefficients C, which remain undetermined are found from the initial
conditions.

Problem. A transversal displacement u=u (x, ¢) of the points of a string
with abscissa x satisfies, at time ¢, the equation

Pu 0%
o~ ot .
where a* = 5(1‘, is the tensile force and @ is the linear density of the

string). Find the form of the string at time ¢ if its ends x=0 and x=/ are

YI

Fig. 107

fixed and at the initial instant, =0, the string had the form of a parabola
u =?—,ﬂx (l—x) (Fig. 107) and its points had zero velocity.

Solution. It is required to find the solution u=u(x, ¢) of equation (2)
that satisfies the boundary conditions

w(0, )=0, u(l, t)=0 3)
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and the initial conditions
Gl 0)=f?"xu—-x), 4 (x, 0)=0. @)

We seek the nonzero solutions of equation (2) of the special form
u=X (x) T (1).
Putting this expression into equation (2) and separating the variables, we get
T (1) _ X" (x)
aT (1) Xx)° ®)
Since the variables x and ¢ are independent. equation (§) is possible only

when the general quantity of relation (5) is constant Denoting this constant
by — A% we find two ordinary differential equations:

T" (£) 4 (aM)*-T (f) =0 and X" (x) +A*X (x) =0.
Solving these equations, we get
T (i) = A cosalt + B sinalt,
X (x) =C cos Ax + D sin Ax,
where A, B, C, D are arbitrary constants. Let us determine the constants.

From condition (3) we have X {(0)=0 and X (/)=0; hence, C=0 and
sin A\l=0 (since D cannot be equal to zero al the same time as C is zero).

For this reason, lkzﬂ. where & is an integer. It will readily be seen that

we do not lose generality by taking for k2 only positive values (k=1, 2, 3,...).
To every value A; there corresponds a particular solution

Uy= (Ak cos—k-i;ft+Bk sin E‘;—n I) sin
that satisfies the boundary conditions (3).
We construct the series

knx

3

S = kart . kant\ | knx
u—z (A,, cos—-[——-{-Bksm ] )sm T
k=1
whose sum obviously satisfies equation (2) and the boundary conditions (3).

We choose the constants A, and B, so that the sum of the series should
satisfy the initial conditions (4). Since

[+ -]
ou Z kan . kant Rant\ . knx

it follows that, by putting £ =0, we obtain

u(x, 0)=2 A sinﬁs}li}fx(l—x)
k=1

and

du(x, 0) < kam . hox
"_*&'—)=qu TB‘*SIHTEO'
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Hence, to determine the coeificients A, and B, it is necessary to expand in
4
a Fourier series, in sines only, the function u(x, 0)= s X (l—x) and the

‘2
. Ou(x, 0)
fuﬂctlon "‘T—'— |=:=0.

From familiar formulas (Ch. VIII, Sec. 4,3°) we have

{
2 (4h knx 32k
A*=l S—-x(l —x) sin —7 dxuﬂ,k. "
0

if #is odd, and A,=0 if & is even;

!
_kz;_:r. Bk_T 50:;{:1?#:0, B,=0.

The sought-for solution will be

- i (2n -+ 1) ant
e 32::v ‘ { - (2n 4 1) %
| S (2t 4-1)3 !
n=o

3103*. At the initial instant ¢=0, a string, attached at
its ends, x=0 and x=1! had the form of the sine curve

u=A sin fff and the points of it had zero velocity. Find the
form of the string at time ¢,

31064*. At the initial time =0, the points of a straight
ou

string 0 <<x <! receive a velocliy 5 = 1. Find the form of the
strinz at time ¢ il the ends of lhe siring x=0 and x=1[ are
fixed (see Problem 3103).

3105*. A siring of length I =100 cm and attached at its ends,
x=0 and x=1{, is pulled out to a distance A=2 cm at point
x=:50 cm at {he initial time, and is then released without any
impulse. Deiermine {the shape of the siring at any time {£.

3106*. In longitudinal vibralions of a thin homogeneous
and rectilinear rod, whose axis coincides with the x-axis, the
displacement u=uwu(x, f) of a cross-seclion of the rod with
abscissa x satisfies, at time ¢, the equation

o’u 2 0%u

g =% G
where a’=% (E is Young's modulus and @ is the density of the
rod). Determine the longitudinal vibrations of an elaslic hori-
zontal rod of length [ =100 cm fixed at the end x=0 and pulled

back at the end x=100 by Ai=1 c¢m, and then released without
impulse.
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3107*. For a rectilinear homogeneous rod whose axis coincides
with the x-axis, the temperature u =u (x, £) in a cross-section with
abscissa x at time ¢, in the absence of sources of heat, salisfies
the equation of heat conduction

du _50%

3?=a ox? !

where a is a constant. Determine the temperature distribution
for any time ¢ in a rod of length 100 cm if we know the initial
temperaiure distribution

u(x, 0)=0.01x(100—x).



Chapter X
APPROXIMATE CALCULATIONS

Sec. 1. Operations on Approximate Numbers

1°. Absolute error. The absolute error of an approximate number a which
replaces the exact number A is the absolute value of the difference between
them. The number A, which satisfies the inequality

|A—a| <A, (1

is called the limiling absolute error. The exact number A is localed within
the limits a—A << A<{a+ A or, more brieflly, A=a + A

2°. Relative error. By the relative error of an approximate number a
replacing an exact number A (A > 0) we understand {he ratio of the absolute

error of the number a to the exact number A. The number 8, which satisfies
the inequality A
...al

A

is called the limiting relative error of the approximate number a. Since in
actual practice A =~a, we coften take the number 6-—-% for the limiting

relative error.

3°. Number of correcl decimals. We say that a positive approximate
number a writlen in the form of a decimal expansion has n correct decimal
places in a narrow sense il the absolute error of this number does not exceed

one half unit of the nth decimal place. In this case, when n > we can
take, for the limiting relative error, the number

1 [ 1\
6=ﬁ(ﬁ) '

where k& is the first significant ,‘,ﬁgl“ of the number a. And conversely, if it

. | 1 .
is known that 6%2 TE (10) , then the number a has n correct decimal

places in the narrow meaning of the word. In particular, the number a

n

definitely has n correct decimals in the narrow meaning if 6-5;%(%0) ;

If the absolute error of an approximate number a does not exceed a
unit of the last decimal place (such, for example, are numbers resulting
from measurements made to a definite accuracy), then it is said that all
decimal places of this approximate number are correct in a broad sense. If
there is a larger number of significant digits in the approximate number,
the latter (if it is the final result of calculations) is ordinarily rounded off
so that all the remaining digits are correct in the narrow or broad sense.

< 0, (2)
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Hencetorth, we shall assume that all digits in the initial data are
correct (if not otherwise stated) in the narrow sense. The results of inter-
mediate calculations may contain one or two reserve digits.

We note that the examples of this seclion are, as a rule, the results of
final calculations, and for this reason the answers to them are given as
approximate numbers with only correct decimals,

4°, Addition and subtiraction of approximate numbers. The limiting ab-
solute error of an algebraic sum of several numbers is equal to the sum of
the limiting absolute errors of these numbers, Therefore, in order to have,
in the sum of a small number of approximate numbers (all decimal places
of which are correct), only correct digits (at least in the broad sense), all
summands should be put into the form of that summand which has the
smallest number of decimal places, and in each summand a reserve digit
should be retained. Then add the resulting numbers as exact numbers, and
round off the sum by one decimal place

If we have to add approximate numbers that have not been rounded off,
they should be rounded off and one or two reserve digits should be retained.
Then be guided by the foregoing rule of addition while retaining the appro-
priate extra digits in the sum up to the end of the calculations.

Example 1. 215.21 4 14.182 +21.4 = 215.2(1) + 14.1(8) + 21 4 =250.8,

The relative error of a sum of positive terms lies between the least and
greatest relative errors of these terms.

The relative error of a difference is not amenable to simple counting.
Particularly unfavourable in this sensz is the dilference of two close numbers.

Example 2. In subtracting the approximate numbers 6 135 and 6.131 to

four correct decimal places, we get the difference 0 004. The limiting relative
10001 45 0.001

error is 6= 0,004 =T=0'25' Hence, not one of the decimals

of the difference is correct. Therefore, it is always advisable to avoid
subtracting close approximate numbers and to transform the given expression,
if need be, so that this undesirahle operation is omitted.

5°, Multiplication and division of approximate numbers. The limiting
relative error of a product and a quotient of approximate numbers is equal
to the sum of the limiting relative errors of these numbers Proceeding from
this and applying the rule for the number of correct decimals (3°), we retain
in the answer only a definite numter of decimals

Example 3. The product of the approximate numbers 25.3.4,12= 104 236.

Assuming that all decimals of the factors are correct, we find that the
limiting relative error of the product is

1
b=57

|

0.01 4 4.20.01 =~ 0.003.
Whence the number of correct decimals of the product is three and the
result, if it is final, should be written as follows: 25.3-4 12 =104, or more
correctly, 25 3.4.12=104 2 + (.3,

6°. Powers and roots of approximate numbers, The limiting relative error
of the mth power of an approximate number a is equal to the m-fold limiting
relative error of this number

The limiting relative error of the mth root of an approximate pumber a

is the -:;l-th part of the limiting relative error of the number a.

7°. Calculating the error of the result of various operations on approxi-
mate numbers. Il Ag,, ..., Ag, are the limiting absolute errors of the appro-
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ximate numbers a,, ..., a,, then the limiting absolute error AS of the resulf
S=f(ap ..., ay)
may be evaluated approximately from the formula

ﬁS--'afla,-[- + f Aa,,.
The limiting relative error S is then equal to
AS of | Aa of
68 = — 1
H [aa,, |r|+ o=
_(an alnf
. -

Example 4, Evaluate S=1In(10.3+ Vﬁ ); the approximate numbers
10.3 and 4.4 are correct 1o one decimal place,

Solution. Let us first compute the limiting absolute error AS in the

— 1 1 Ab
general form: S=In{a+ Vb). AS=——-—--—( a-+— __) We have
a+V b 2 lf
Aa=Ab=~ 20, V4 = 2.0976...; we leave 2.1, since the relative error of
the approximate number Vﬁ is equal to ::15 ;0 ;{}. the absolute error

is then equal to %2—1-

g5 =0 We can be sure of the first decimal place. Hence,

1 1 1 1 1 1 13
AS={o3T2 (5@+“2‘ ‘302, 1)212.4-20 (‘+ 4"‘:@) = 7604 ~ 0-905.

Thus, two decimal places will be correct.

Now let us do the calculations wilh one reserve decimal:
log (10.34 V' 4 4)=log 12 4==1.093, In (1034 V'4.4)=~1.093-2.303 = 2.517,
And we get the answer: 252

8°. Establishing admissible errors of approximate numbers for a given
error in the result of operations on them. Arplying the formulas of 7° for
the quantities AS or 8S given us and considering all particular differentials

|32
ab-;f)lute errors Ag,, ..., Aa',,,, of the approximate numbers ay, ...
that enter into the operations (the principle of equal effects).

It should be pointed out that somelimes when calculating the admissible
errors of the arguments of a function it is not advaniageous fo use the
principle of equal effects, since the latter may make demands that are
practically unfulfilable In these cases it is advisable to make a reasonable
redistribution of errors (il Lhis is possible) so that the overall fotal crror does
not exceed a specilied quantity. Thus, sirictly speaking, the problem thus
posed is indeterminate,

Example 6. The volume of a “cylindrical segment”, that is, a colid cut
off a circular cylinder by a plane passing through the diameter of the base
(equal to 2R) al an angle o to the base, is computed from the formula

=-§- R? tan a. To whatl degree of accuracy should we measure the radius

Aa, or the quantities

'”' equal, we calculate the admissible

.a"-| aun
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R =60 cm and the angle of inclination a so that the volume of the cylindrical
segment is found to an accuracy up to 1%?

Solution. If AV, AR and Aa are the limiting absolute errors of the
quantities V, R and a, then the limiting relative error of the volume V that
we are calculating is

6—3&}? 2Aa 1

" R +sin2a€Tﬁﬁ’

JAR 1 2Aa 1
We assume Tﬁ;m and m‘:gfﬁﬁ' Whence

R _‘_Gncm

ﬁRééa—)-u-EoT=l min;
sin 2a 1 o
Ao < %D—a‘.mradmnmg.

Thus, we ensure the desired accuracy in the answer to 1% if we measure
the radjus to 1 mm and the angle of inclination a to %%,

3108. Measurements yielded the following approximate numbers
that are correct in the broad meaning to the number of decimal
places indicated:

a) 12°07’14"; b) 38.5 c¢cm; c) 62.215 kg.

Compute their absolute and relative errors.
3109. Compute the absolute and relative errors of the follow-

ing approximate numbers which are correct in the narrow sense
to the decimal places indicated:

a) 241.7; b) 0.035; c) 3.14.

3110. Determine the number of correct (in the narrow sense)
decimals and write the approximate numbers:

a) 48.361 for an accuracy of 1%;

b) 14.9360 for an accuracy of 1%;

c) 592.8 for an accuracy of 2%.

3111. Add the approximate numbers, which are correct to the
indicated decimals:

a) 25.386 + 0.49 43.10 + 0.5;

b) 1.2-10"4+41.72 4-0.09;

c) 38.1+2.043.124.

3112. Subtract the approximate numbers, which are correct
to the indicated decimals:

a) 148.1—63.871; b) 29.72—11.25; c¢) 34.22—34.21.

3113*. Find the difference of the areas of two squares whose
measured sides are 15.28 ¢m and 15.22 cm (accurate to 0.05 mm).

3114, Find the product of the approximate numbers, which
are correct to the indicated decimals:

a) 3.49-8.6; b) 25.1:1.743; ¢) 0.02-16.5. Indicate the possible
limits of the results.
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3115. The sides of a rectangle are 4.02 and 4.96 m (accurate
to | cm). Compute the area of the rectangle.

3116. Find the quotient of the approximate numbers, which
are correct to the indicated decimals:

a) 5.684 : 5.032; b) 0.144 : 1.2; c) 216:4.

3117. The legs of a right triangle are 12.10 cm and 25.21 ecm
(accurate 1o 0.01 ¢m). Compute the tangent of the angle opposite
the first leg.

3118, Compute the indicated powers of the approximate
numbers (the bases are correct to {the indicated decimals):

a) 0.4158% b) 65.2% c¢) 1.5%,

3119, The side of a square is 45.3 cm (accurale to 1 mm).
Find the area.

3120, Compute the values of the roots (the radicands are
correct to the indicated decimals):

a) V2.715; b) }/65.2; ¢) V'8I.1.

3121. The radii of the bases and the generatrix of a truncated
cone are R=23.64 cm+0.01 em; r=1731 em+0.01 cm; /=
= 10.21 cm £ 0.01 cm; mw=23.14. Use these data to compute the
total surface of the truncated cone. Evaluate the absolute and
relative errors of the result.

3122. The hypotenuse of a right {riangle is 15.4 cm 4-0.1 cem;
one of the legs is 6.8 cm 4 0.1 em. To what degree of accuracy
can we delermine the second leg and the adjacent acute angle?
Find their values,

3123. Calculate the specific weight of aluminium if an alumin-
ium cylinder of diameter 2 cm and altitude 11 cm weighs
93.4 gm. The relative error in measuring the lengths is 0.01,
while the retative error in weighing is 0.001.

3124, Compuie the current if the electromotive force is equal
to 221 volts 41 volt and the resistance is 809 ohms + 1 ohm.

3125. The period of oscillation of a pendulum of length { is

equal to =
r=2} L,

where g is the acceleration of gravity. To what degree of accuracy
do we have to measure the lenglth of the pendulum, whose period
is close to 2 sec, in order to obtain its oscillation period with a
relative error of 0.5%? How accurate must the numbers n and g
be taken?

3126. It is required to measure, io within 1%, the lateral
surface of a truncated cone whose base radii are 2 m and 1 m,
and the generalrix is & m (approximately). To what degree of
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accuracy do we have to measure the radii and the generatrix and
to how many decimal places do we have to take the number n?

3127. To determine Young's modulus for the bending of a
rod of rectangular cross-section we use the formula

P
4 " d%s’

where [ is the rod length, b and d are the basis and altitude of
the cross-section of the rod, s is the sag, and P the load. To
what degree of accuracy do we have to measure the length [ and
the sag s so that the error E should not exceed 5.5%, provided
that the load P is known to 0.1%, and the quanlities d and b
are known to an accuracy of 1%, { =50 cm, s~ 2.5 cm?

E_

Sec. 2. Interpolation qf Functions

1°. Newton’s interpolation formula. Let x,, x,, ..., x, be the tabular val-
ues of an argument, the difference of which h=Ax; (Ax;j=x;+y—x; i=0,1,
..., n—1) is constant (table interval) and y,, y,, ., Y, are the correqpond
ing values of the function y Then the value of the function y for an inter-
mediate value of the argument x is approximately given by Newiton’s inter-
polution formula

gl(g—1).. (a——n-H)

y=yo+a-Ayo+qw2 DAty 4 = o (1)
where q=x;hx° and Ay,=y,—y, A%y,=Ay,— Ay, ... are successive finite
diflerences of the furction y. When x=x; (t=0, 1, 57 n), the polynomial
(1) takes on, accordingly, the tabular vaiues y; 1=0,1, . ., n). As partic-

ular cases of Newtun's formula we obtain: for n_I linear nterpolation;
for n= 2, quadratic interpolation. To simplily lhe use of Newton's forinula,
it 1s advisable first to set up a table of finile differences.

If y=f(x) is a polynomial of degree n, then

A"y; = const and A"+'y;=0

and, hence, formula (I) is exact

In the general case, if f(x) has a continuous derivative f"+" (x) on the
interval {a, b}, which includes the points x,, x,, ..., x, and x, then the error
of formula (1) is

n
~ — ... (g—i41

f=o
n41 q{q (q ﬂ) (rn41)
=h m + ), @)
where E is some intermediate value between x; (1=0, 1, ..., n) and x. For

practical use, the following approximate formula is more convenient:

Aﬂ-i-!
Rn (%) =~ (n+ 1)1

glg=—1)...(g—n).
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If the number n may be any number, then it is best fo choose it so that
the dilference A"+'y, =~ 0 within the hmits of the given accuracy, in other
words, the diflerences A”y, should be constant to within the given places of
decimals

Example 1. Find sin 26”15 using the tabular data sin26°=0.43837,
8in 27° =0.45399, sin 28° — 0,46947,

Solution. We set up the table

{ X " Ay, A%y,

0 26° | 0 42837 | 1862 | —14
1 27° | 0 45399 | 1548
2 28° | 0 46947

°15’ — 26°
HE]‘B. h"—"ﬁO', q=g*6—*l—w—'2—=‘£".

Applying formula (1) and using the first horizontal line of the table, we

have
] {1
1 T\7~!
sin 25“15‘:0.43837+-‘1- 0.01562 4- ——2-—'-——-—— « {(—0.00014) =0.44229.

Let us evaluate the error R, Using formula (2) and iaking inte account
that if y=smx, then |y | <1, we will have:

(41 ){3)

a\q 4 n\* 7 1 1 -
IRyl < 3] (Ts‘f}) T SR
Thus, all the decimals of sin 26°15" are correct.

Using Newlon’s formula, it is alsc pessible, from a given intermediate
value of the function y, to find the correspoading value of the argument x
(inverse interpolation). To do this, lirst deterinine the corresponding value ¢
by the method of successive approximation, putting

w4 Yo
q Ay,
an
U4 qm_‘?m (@"—=1 Ay ¢g"—=1).. (¢ —n+1) A"y,
q 21 Ay, " nl Ay,

(t1=0,1,2 ..)).

Here, for ¢ we take the common value (to the given accuracy!) of two suc.
cessive approximations ¢! ="+ Whence x=x,4¢-h.
Example 2. Using the table

1 w=sinh x Ay I Ay
2 2 4 457 1.009 0.220
24 5.466 1 229

26 6.695

approximate the root of the equation sinhx=35,
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Solution. Taking y,=4.457, we have
o 9—4.457 0,543

(o) — .
9"= 005 —T.000 0%
g (1—g¢') A%y, 0.538.0.462 0.220 _
D g — gl® 20
=g+ 1 By, OBt T ‘Tom™
=0.5384-0.027 =0.565;
20 5ag 4 25680485 0.930 ¢, cag 10,007 ==01565,

2 "1.009
We can thus take
x=2.240.565-0.2=2,2+0.113=2.313.

2°, Lagrange’s interpolation formula. In the general case, a polynomial of
degree n, which for x=x; takes on gwen values y; ({=0, l, ...y 0), is given
by the Lagrange interpolation formula
() (=) (=) | ) X))
(xg—x;) (Xg—%y). . . (Xg—x,,) O (xy—xg) (X —%,) . . (% —x,) %
) (x—xg) (x—x,). . A¥—Xp_;) (X—Xp41). .. (Xx—2%3) Yp -
(p— %) (p—2,). < (X —Xp =) (Xp— X 1) .- (Kp—g) “ % ' °°
b (x—x) (x—x,). . .(x—xp, _y) y
(Xn—%5) (Xn—%y). . (Xy—2p ) 7™

y‘:

3128. Given a table of the values of x and y:

x 1 2 3 4 5 6

y | 3| w | 15]i1i2] o] 5

Set up a table of the finite differences of the function y.

3129. Set up a table of differences of the function y=x*—
—5x? 4+ x-—1 for the values x=1, 3, b, 7, 9, 11. Make sure that
all the finite differences of order 3 are equal,

3130*. Ulilizing the constancy of fourth-order differences, set
up a table of differences of the function py=x*—10x" 4 2x* - 3x
for integral values of x lying in the range | <<x<10.

3131. Given the table

log 1 =0.000,
log 2 =0.301,
log 3=0.477,
log 4=0.602,
log 5=0.699.

Use linear interpolalion to compute the numbers: log 1.7, log 2.5,
log 3.1, and log 4.6.
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3132. Given the table

sin 10°=0.1736, sin 13°=0.2250,
sin 11°=0.1908, sin 14°=0.2419,
sin 12°=0.2079.  sin 15° —0.2588.

Fill in the table by computing (with Newton's formula, for n =2)

the values of the sine every half degree.
3133. Form Newton's interpolation polynomial for a function

represented by the table

x 0 1 2 3 4

y i 4 15 40 85

3134*. Form Newton’s interpolation polynomial for a function
represented by the iable

X 2 4 6 8 t0

Yy 3 11 27 50 83

Find y for x=5.5. For what x will y=20?
3135. A function is given by the table

X —2 1 2 4

y % | —8 | —15| —23

Form Lagrange’s interpolation polynomial and find the value of

y for x=0.
3136. Experiment has yielded the contraction of a spring (x 1mm)

as a function of the load (P kg) carried by the spring:

x 5 10 15 20 25 30 35 40

P 49 105 | 172 | 253 | 352 | 473 | 619 | 793

Find the load that yields a contraction of the spring by 14 mm.
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3137. Given a table of the quantities x and y

X 0 1 3 4 5

y I | =3 | 25 | 129 | 381

Compute the values of y for x=0.5 and for x=2: a) by means
of linear interpolation; b) by Lagrange's formula.

Sec. 3. Computing the Real Roots of Equations

1°. Establishing initial approximations of roots. The approximation of the
roots of a given equation
[ (x)=0 (n

consists of two stages: 1) separating the roofs, that is, establishing the inter-
vals (as small as possible) within which lies one and only one root of equa-
tion (fl); 2) computing the rools to a given degree of accuracy

If a function f(») is defined and continuous on an interval [a, 4] and
f(a)-f (b) <O, then on [a, b} there is at least one root E of equaticn (1).
This root will definitely be the only one if f (x)>0 or f' (x) <0 when
a<x<h.

In approximating the root & it is advisable to use millimetre paper and
construct a graph of the function y=f(x). The abscissas of the roints of
intersection of the graph with the x-axis are the roo!s of the equation f(x)=0.
It is sometimes convenient to replace the given equation with an equivalent
equation ¢ (x) == (x). Then the roots of the equation are found as the abs-
cissas of points of interseclion of the graohs y—=@ (x) and y =1 (x).

2°. The rule of proportionate parts (chord method). [f on an interval [a, b}
there is a unique root & of the equation f(x)=0, where the function f(x)
is continuous on [a, 6], then by replacing the curve y=7(x) by a chord
passing through the points [a, f(a)] and [b, f(b)], we obtain the first
approximatior of the root

S 1 S
A== —f@ ¢ =

To obtain a second approximation c,, we apply formula (2) to that one ol
the intervals [a, ¢,] or [¢,, ) at the ends of which the function f(x) has
values of oppesite sign. The succeeding approximations are constructed in the
same manner. The sequence of numbers ¢, (n=1, 2, ...) converges to the
root &, that is,

lim ¢, =E.

n—e+o

Generally speaking, we should continue to calculate the approximations ¢,
€ay ..., until the decimals retained in the answer cease to change (in accord
with the specified degree of accuracy!); for inlermediate calculations, take
one or lwo reserve decimals This is a general remark.

If the function [ (x) has a nonzero continuous derivative [’ (x) on the
interval [a, b), then to evaluate the absolute error of the approximate root
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¢, we can make use of the formula
|E—c ,5;”(5::”
n p. t
where p= min bl ' (x)].

&2
3°, Ne::tort’;' method (method of tangents). If f’(x) # 0 and " (x) £ 0 for
a<<x<b, where f(a)f(b) <0, f(a) [ (a) >0, then the successive approxima-

tions x, (n=0, 1, 2, ...) to the root § of an equation f{(x)=0 are computed
from the formulas
. _ f(xn—l) __,_1 2
xu.—al. xn——xu_l_"'—""*‘”"" (n_ ¥ ] -")' la)

P (Xp—1)

Under the given assumptions, the sequence x,(n=1, 2, ...) is mono-
tonic and
Hm .x,=E.
n—= o0

To evaluate the errors we can use the formula

|xn_§ | gl L (;“')_ '
where p= min | (x)|.
a<x<b
For practical purposes it is more convenient to use the simpler formulas
Xo=4a, .t',.:xn_‘-—ﬂ.f (xn—l) [HZI, 2, - 1 (3‘)

where a:fla—, which yield the same accuracy as formulas (3).

If f(b) " (b) >0, then in formulas (3) and (3') we should put x,=b.
4°, lterative method. Let the given equation be reduced to the form

x=q(x), (4)

where | @’ (x}|<<r <1 (r is constant) for a<<x<Cb, Proceeding from the ini-
tial value x,, which belongs 4o the interval [a, b], we build a sequence of

numbers x;, %,, ... according to the following law:
H=Qx), X2=09(X,), ..., ;=@ X;_1)s .o\ (5)
fas<x,<b (n=1, 2, ...), then the limit
E=Ilim x,
n— @

is the only root of equation (4) on the interval [a, b}; that is, x, are succes-
sive approximations to the root E,
The evaluation of the absolute error of the nth approximation to x, is
given by the formula |
—Xp

jx
]'g‘—x"]s;;—w—'!-'l-’-'-':;-—.

Therefore, if x, and x,,, coincide to within e, then the limiting absolute

error for x, will be —l

In order to transform equation f(x)=0 to (4), we replace the latter with
an equivalent equation
x=x—Mf (2,

where the number A # 0 is chosen so that the function ;;c [x—=Af ()] =1=—Af’ (x}
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should be small in absolute value in the neighbourhood of the point x, [for
example, we can put 1—Af (x,)=0].

Example 1. Reduce the equation 2x—Inx—4 =0 to the form (4) for the
initial approximation to the root x,=2.5.

Solution. Here, f{x)=2x—Inx—4; [’ (x)=2—ji- . We write the equiva-

lent equation x=x—A (2x—Inx—4) and take 0.5 as one of the suitable
values of A; this number s close to the root of the equation
I—k(2—i) =0, that is, close to Ltf).ﬁ.
x ) lx=2.5 1.6
The initial equation is reduced to the form
x=x—0.5 (2x—Inx—4)

or

x=2-|—%ln X,

Example 2. Compute, to two decimal places, the root E of the preceeding
equation that lies between 2 and 3.

Computing the root by thg iterative method. We make use of the result

of Example 1, putting x,=2.5. We carry out the calculations using formulas
(5) with one reserve decimal.

x,:Q—]—% In2.5=2.458,

ry=2+4 5 In2.458 =2 450,
x,=2+—; 1n 2.450 == 2.448,
x.=2+—é— In 2,448 ~2.448,

And so £=2 45 (we can stop here since the third decimal place has
become fixed)
Let us now evaluate the error. Here,

1 e i
(p(x)--2+—2* Inx and ¢ ("‘)‘—Q}'
Considering that all approximations to x, lie in the interval [2.4, 2.5], we

get

r=max | ¢’ (x) ]=-2—_]—-—24=0.21.

Hence, the limiting absolute error in the approximation to x, is, by virtue
of the remark made above,

0.001

A=1"073

=0,0012 =~ 0.001.

Thus, the exact root § of the equation lies within the limits
2 447 < E < 2.449;

we can take §==2.45, and all the decimals of this approximate number will
be correct in the narrow sense.
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Calculating the root by Newton’s method. Here,

1

el

On the interval 2<<x<3 we have: /(x)>0 and F(X)>0; F(2f(R<O;
f (3) f" (3) > 0. Hence, the conditions of 3° for x,=3 are fulfilled.

We take g

We carry out the calculations using formulas (3") with two reserve decimals:
x;=3—0.6(2-3—1n3—4)=2 4592;
xy=2.4592—0.6(2.2 4592—1n 2 4592 —4) =2 448I;
x3=2.4481—0.6 (2-2.448]1 —n 2.4481 —4)=2.4477;
x,=2.4477—0.6(2-2 4477 —1In 2 4477 —4) =2 4475,

At this stage we stop the calculations, since the third decimal place
does not change any more. The answer is: the root £=2.45. We omit the
evaluation of the erron

5°. The case of a system of {wo equations. Let it be required to calcu-
late the real roots of a system of two equations in two unknowns (to a given

degree of accuracy):
{ f(x! y)zol (6)

P (x! y] =0,

and let there be an initial approximation to one of the solutions (§, n) of
this system x=1x, y=4y,.

This initial approximation may be obtained, for example, graphically,
by plotting (in the same Cartesian coordinate system) the curves f(x, y) =0
and @ (x, ¥)>=0 and by determining the coordinates of the points of inter-
section of these curves,

a) Newton’s method. Let us suppose that the functional determinant

9 (x, 4)

does not vanish near the initial approximation x=ux, y=y, Then by New-
ton's method the first approximate solution to the system (6) has the form
x, = Xo+ @y, Yy=Yo+ Boy Where a,, B, are the solution of the system of two.
linear equations

f=2c—tnx—4,  f(=2—=, F@=

! {xui yu} +u'uf:g (xor yo) "}' ﬁnf; (xan yo) =01
@ (X9 Yo) '|"‘105P,; (Xgs Yo) + ﬂe‘:P_:, (%os ¥o) =0.
The second approximation is obtained in the very same way:

Xp=%+®, Ya=8 +Pu
where @, f, are the solution of the system of linear equations

Flxn o) +ady (5, ) +Bif, (0 4)=0,
(X 42+ Py (2 4)+Bi@, (1 4)=0.

Similarly we obtain the third and succeeding approximations.
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b) lterative method. We can also apply the iterative method to solving
the system of equations (6), by transforming this system to an equivalent one

x=F(x, y),
7

{ y=® (x, y) w
and assuming that

|Feten [+]| 0, (e )| <r<bi |F (x, 9) [+] 0, p|<sr<1 8)

in some two-dimensional neighbourhood U of the initial approximation (x,, y,),
which neighbourhood also contains the exact solution (E, n) of the system.

The sequence of approximations (x,. y,) (n=1, 2, ...). which converges
to the solution ol the system (7) or, what 1s lhe same thing, to the solution
of (6), is constructed according to the following law:

xy=F (xp, o), 41=D (x5, 1),
x,=Fx, 5), 4.=D(x, y,),
Xy="F (x5, Y3), Ys=D (x5 y,),

--------------

llllllllllllll

If all (x,, gy,) belong to U, then lim x,=§, lim y,=n.

n— u n -+ »
The following technique 1s advised for transforming the system of equa:
tions (6) to (7) with condition (8) observed. We consider the system of
equations

{ af (x. N+ Po(x, y) =0,
Yf(.l, Ij)—l—ﬁtp (x- y):'U,

which is equivalent to (6) provided that |$ [‘é’l # 0. Rewrilte it in the form
x=x+af (x, +Po(x, y) =F (x, y),
y=y+v(x, ) +0p (x, ) =D (x, y).

Choose the parameters a, B, y, 8 such that the partial derivatives of the
functions F(x, y) and @ (x, y) will be equal or close to zero in the initial
anrnJ{lﬂ]HtlQﬂ; in other words, we find u, B, y, 0 as approximate solutions
of the system of equations

1+ "'f; (X0, o) -+ ﬂfo (%0, Yo) =0,
af, (o, 4o) + Bo, (Xe, 45)=0,
Yy (on 46) + 00, (X, ) =0,
1+Yf;, (X0, Yo) + 0@, (x5, #,) =0.

Condition (8) will be observed in such a choice of parameters a, B, ¥, 8
on the assumption that the partial derivatives ol the functions f(x, ) and
@ (2, ) do not vary very rapidly in the neighbourhood of the initial approx-
imation (x,, 1,)-

Example 3. Reduce to the form (7) the system of equations

{ x4 gt —1=0,

.given the initial approximation to the root x,=0.8, y,=0.55.
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Solution. Here, f(x, y)=x*+y'—1, @(x, )=2"—y; [ (%, y)=1.5,

Fy (o 90} =115 @, (%, 4} =1.92, @, (%0, yo)=— 1.
Write down the system (that is equivalent to the initial one)
{a(x’+£f'-—l)+ﬁ(x’—y)=0. (Iu. I#O)
Y& 4y —1)+ 6 (#—y)=0

in the form

x=x+0 ¥ +4'—1)+p (¢ —p),

y=y+y+y—1)+0(x"—y).
For suitable numerical values of a, B, y and & choose the solution of the
system of equations

141.6a+4-1.928 =0,

l.la—f =0,
1.6y 4- 1.928 =0,
14-1.1ly—48=0;

i. e., we put a=~—0.3, p =—0.3, y=—0.5, 6=0.4.
Then the system of equations
x=x—03(x2*+y*—1)—0.3 (L —y),
y=y—05(*+y*—1)+04(2—y),

which is equivalent to the initial system, has the form (7); and in a suffi-
ciently small neighbourhood of the point (x,, y,) condition (8) will be fulfilled.

Isolate the real roots of the equations by trial and error, and
by means of the rule of proportional parts compute them to two
decimal places.

3138, x>’— x4 1=0.

3139. x*4+05x—1.656=0.

3140. xX*—4x —-1=0.

Proceeding from the graphically found initial approximations,
use Newton’s method to compute the real roots of the equations
to two decimal places:

3141. ¥ —2x—5=0. 3143. 2% — 4x.
3142. 2x—Inx—4=0. 3144. logx =+

Utilizing the graphically found initial approximations, use the
iterative melhod 1o compute the real roots ol the equalions to
two decimal places:

3145. x*—5x- 0.1 =0. 3147. x* —x—2=0.

3146. 4x=cosx.

Find graphically the initial approximations and compute the
real roots of the equations and systems to two decimals:

3148. x'—3x+ 1=0. 3151, x-lnx—14=0.
3149, x*—2x* 4 3x—b5=0. 3152. x' +3x—0.5=0.
3160, x'Lx*"—2x—2==0, 3153. 4x—7sinx=0.
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3154, x*42x—6=0. 3157 { x*4y—4=0,

3155. ¥ 4-e *—4=0. "1 y—logx—1=0.
4y—1=0,

3156. { 2,

3158. Compute to three decimals the smallest positive root of
the equation tan x=x.

3159. Compute the roots of the equation x-tanh x=1 to four
decimal places.

Sec. 4. Numerical Integration of Functions

1°, Trapezoidal formula. For the approximate evaluation of the integral
b

{ Foode

a

[f(x) is a function continuous on [a, b]] we divide the interval of integration
—a
n
Let x;=x,+ih (=a, x,=b, i=0, 1, 2, ..., n) be the abscissas of the par-
tition points, and let y;=7/ (x;) be the corresponding values of the integrand
y=1[(x). Then the trapezoidal formula yields

[a, b] into n equal parts and choose the interval of calculations h=b

b
Sf(x)dmh("’“—Jgi'!+yl+y.+...+yn_,) (1)
a

with an absolute error of
hl
Ra<i5(b—a)M,,

where My=max | (x)| when a<<x<b.
To attain the specified accuracy e when evaluating the integral, the in-
terval & is found from the inequality

B 12¢

SE=am, N

That is, h must be of the order of l/a_. The value of h obtained is rounded
off to the smaller value so that
b—a

——=n

h

should be an integer; this is what gives us the number of partitions n.
Having established & and n from (1), we compute the integral by taking the
values of the integrand with one or two reserve decimal places.

2°, Simpson’s formula (parabolic formula). If n is an even number, then
in the notation of 1° Simpson's formula

b
V10 ds=F Wotom + 4G+ 00t o Homoi) +
a +2(Wt Yt Fyndl 3
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holds with an absolute error of
hii
Ry < 155 (0—a) My, (4)
where M,=max| /1Y (x)| when a <<x<b.
To ensure the specified accuracy & when evaluating the integral, the
interval of calculations h is determined from the inequality
hl.
180 (b—a) M, <. (9)

That is, the interval h is of the order "/?. The number h is rounded off
to the smaller value so that n=-—:ﬁE is an even integer.

Remark. Since, generally speaking, it is difficult to determine the inter-
val & and the number n associated with it from the inequalities (2) and (5),
in practical work h is determined in the form of a rough estimate. Then,
after the result is ohtained, the number n is doubled; that is, 4 is halved.
If the new result coincides with the earlier one to the number of decimal
places that we retain, then the calculations are stopped, otherwise the pro-
cedure is repeated, ete.

For an approximate calculation of the absolute error R ol Simpson’s
quadrature formula (3), use can also be made of the Runge principle, accord-
ing to which

R—|2—3|
15

where £ and T are the results of calculations from formula (3) with interval
h and H=2h, respectively,.

3160. Under the action of a variable force F direcled along
the x-axis, a material point is made to move along the x-axis

from x=0 to x=4. Approximate the work A of a force F if a
table is given of the values of its modulus F:

X |n.0 0.5 |1.0 |16 |2.0 |2.5 |3.0 3.5 | 4.0
F ]1.50 0.750.50 0.75| 1.50]2.75| 4.50 | 6.75 | 10.00

Carry out the calculations by the trapezoidal formula and by
the Simpson formula.
I

3161. Approximate S(3x’-—4x)dx by the trapezoidal formula

utting n=10. Evaluate this integral exactly and find the abso-
ute and relative errors of the result. Establish the upper limit A
of absolute error in calculating for n=10, utilizing the error
formula given in the text.
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1

3162. Using the Simpson formula, calculate S

xdx
x+1
decimal places, taking n=10. Establish the upper limit A of abso-
lute error, using the error formula given in the text.

Calculate the [ollowing definite integrals to two decimals:
1 2

to four

3163, { & 3168, (% gy,
35;1—{-.2 { x Ox

3164. Srf?"; 3169. | 2%y

3165. SH_I, 3170. g’c"”dx

3166. leogxdx. 3171. R

e floixd“'- 3172. S e-* dx.
:

3173. Evaluate to two decimal places the improper integral

S & by applying the substitution x==— .Verify the calculations
b
1
by applying Simpson’s formula to the integral S%’ where b
-2
is chosen so that S i ,< - 103,

3174, A plane hgure bounded by a half-wave of the sine curve
y=sinx and the x-axis is in rotation about the x-axis. Using the
Simpson formula, calculate the volume ot the solid of rotation
to two decimal places

3175*%, Using Simpson’s formula, calculate to two decimal

places the length of an arc of the ellipse 5:--}-(—0-—5’:2—2-5}—,=1 situated
in the first quadrant.

Sec. 5. Numerical Integration of Ordinary Differential Equations

1°. A method of successive approximation (Picard’s method). Let there
be given a first-order differential equation

y' =[x y) €1
subject to the initial condition y=y, when x=x,.
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The solution y (x) of (1)}, which satisfies the given initial condition, can,
generally speaking, be represented in the form ’

g ()= lim y; () (2)

where the successive approximations y;(x) are determined from the formulas

Yo [x) =Yg

Yy (X)=y,+ S F(x, y_,{x)) dx
Xo

(=0, 1, 2, ...).

If the right side f(x, y) is defined and continuous in the neighbourhood
R{|x—x,1<a, |y—y,|<b}

and satisfies, in this neighbourhood, the Lipschitz condition
| Fx g)—F (% ya) | S Ly —ys|

(L. is constant), then the process of successive approximation (2) definitely
converges in the interval

|x-xul“"5;hs

w here h:mgn (a. -1%) and M=max |/ (x, y)|. And the error here is
R

Ln‘x_xoj"+1

Ru=|lgX)—y, (x) | <M o T

[x—x, | < h.

The method of successive approximation (Picard’s method) is also appli-
cable, with slight modifications, to normal systems of differential equations.
Differential equations of higher orders may be written in the forin of systems
of differential equations.

2°. The Runge-Kutta method, Let it be required, on a given interval
xo<<x< X, to find the solution y (x) of (1) to a specified degree of accuracy e.

To do this, we choose the interval of calculations h=x—x“

by dividing

the interval [x,, X] into n equal parts so that h* <e. The partition points
x; are determined from the formula

xy=xo+ih (t1=0,1, 2, ..., n).

By the Runge-Kutta method, the corresponding values y;==y (x;) of the desired
function are successively computed from the formulas

Yi+r =Y+ Ayy.
1 ’
byi=7% ( D+ 2k 4268 + YY),

131000
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where
i=0,1,2, ..., nand
kP =f (x;, y) b,
; h OR
k“’:f<x-+— ) y;-i-—-—) i,
2 I 2 2 (3)

(1)
h k
k‘.”=f(x;+§, yi+—5 )h.

= f (x;+h, yi+&P) A

To check the correct choice of the interval A it is advisable to verify
the quantity

3
k;’—k:“
kill)__kgtl

T!zie frgction 0 should amount to a few hundredths, otherwise A has to be
reduced.

The Runge-Kutta method is accurale fo the order of A'. A rough estimate
of the error of the Runge-Kutta method on the given Iinterval [x,, X] may
be obtained by proceeding from the Runge principle:

|!fzm_‘.§m |
R =—15

where n=2m, y,, and y, are the results of calculations using the scheme (3)
with interval A and interval 2h.

The Runge-Kutta method is also applicable for solving systeins of diffe-
rential equations .

y’=f(x' y’ 2}' 2':(P(xv y: z] (4)

with given initial conditions y =y, z=2, when x-=x,.
3°. Milne’s method. To solve (1) by the Milne method, subject to the

initial conditions y=y, when x=x,, we in some way filnd the successive
values

yy=y (X)), Ys=y(xy), Ys=u(x)

of the desired function y(x) [for instance, one can expand the solution y (x)
in a series (Ch. 1X, Sec. 17) or find these values by the method of successive
approximation, or by using the Runge-Kutta method, and so forth]. The ap-

proximations y; and y; for the following values of y; (i=4, 5, ..., n) are
successively found from the formulas

5:5’{—4'1’% @fi—a—Fi-2+2f; 1),
Vi=Yimst o i 4 Hios s
where f;=f(x;, y) and [;={(x; y;). To check we calculate the quantity

| I ==y
8i=§§| yi—y | (6)
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If e; does not exceed the unit of the last decimal 10" retained in the

answer for y (x), then for y; we take y; and calculate the next value gy;.,,
repeating the precess. But if g; > 107" then one has to start from the be-
ginning and reduce the interval of calculations. The magnitude of the initial
interval is determined approximately from the inequality A* < 10™7,

For the case of a solution of the system (4), the Milne formulas are
written separately for the functions y (x) and z(x). The order of calculations
remains the same.

Example 1. Given a differential equation ¥y’ =y—x with the initial con-
dition y (0)=1.5. Calculate to two decimal places the value of the solution
of this equation when the argument is x=1.5. Carry out the calculations
by a combined Runge-Kutta and Milne method.

Solution. We choose the initial interval 4 from the condition A* < 0,01,
To avoid involved writing, let us take £ =0.25. Then the entire interval of
integration from x=0 to x—=1.5 is divided into six equal parts of length
0.25 by means of points x; (i=0, 1, 2, 3, 4, 5, 6); we denote by y; and y:,
the corresponding values of the solution y and the derivative y'.

We calculate the first three values of y (not counting the initial one) by
the Runge-Kutta method [from formulas (3)]; the remaining three values
— Y., UYs, Ys— we calculate by the Milne method [from formulas (5)]

he value of y, will obviously be the answer to the problem.

We carry out the calculations with two reserve decimals according to a
definite scheme consisting of two sequential Tables I and 2. At the end of
Table 2 we obtain the answer,

Calculating the value y,. Here, f(x, y)=~—x+1y, x,=0, y3=1.5

h=0.25. Ay,= ]g (R -+ 2k - 268 + £ (V) =

=% (0.3750 - 2-0.3906 + 20,3926 - 0,4106) = 0.3920;

RO = f (x5, ¥o) h= (— 04 1.5000)0.25 = 0.3750;

k{®

kg"’:f(x,,-i—%l, ot — )h:(_o.125+1.5000+0.1875;0.25=0.3906;

p{0)
B = f (x1,+ % v Mk %) h=(— 0 1254 1.5000 4- 0.1953) 0.25 = 0.3926;

RO —F(xo+h, yo+ k) h=(—0.25+ 1.500040.3926) 0.25=0.4106;

Yy =Yo+ Ay, =1.5000 40,3920 =-1.8920 (the first three decimals n tlus
approximate number are guaranteed).
Let us check:

k(lﬂ) = kL)

_10.3906—0.3926| 20
HTRD

= [0.3750—0.3906] _ 156

——

=0.13.

By this criterion, the interval h that we chose was rather rough.
TSi;r];ilarly we calculate the values y, and y,. The results are tabulated
in Table 1.

13*
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Table 1. Calculating ¥,, ¥, ¥; by the Runge-Kutta Method.
f(x, )=—x+y h=025

h
, f (JC!'-*—? ]
Value of { Xq Yi ;’{ - , KD B0 By
E x-. 3
4 y.‘. y‘_}_ _2'_)
0 0] 1.5000 1.5000 0.3750 1.5625 0.3906
i 0.25 1.8920 1.6420 0.4105 1.7223 0.4306
2 0.50 2.3243 1.8243 0.4561 1.9273 0.4818
3 075 2.8084 2.0584 0.5146 2.1907 0.5477
k
f(xf-l-— ,
: E f(x"l"h:
Valueof | kg” k.(tn Y -|—I ki“‘) kn(.i} A‘W Y1
9‘1“|‘2—)
0 1.5703 0.3926 ]1.6426 0.4106 0.3920 1.8520
| 1.7323 0.4331 1.8251 0.4562 0.4323 2.3243
2 1.9402 0.4850 2.0593 0.5148 0.4841 2.8084
3 2.2073 (0.5518 2.3602 0.5900 0.5506 3.3590

el

Calculating the value of y,. We have: f(x, Y)=—=x+y, h=0.25, x,=I;
' ye==1.5000, y,=1.8920, y,=2.3243, y,=2.8084;
Yo =1.5000, y,=1.6420, y,=1.8243, y, = 2.0584,

Applying formulas (5), we find
— 4h r ]
Va=Yo+ 3 (2, —Y,+24,) =
4.0.25
== 1.5000-{——-—3——-— (21,6420 —1.8243 4 2-2.0384) — 3.3588;
V=F (X4 == 13.3588 = 2.3588;

Vo=t + Fh (v, + 4y, + ;) = 2.3243 - (%3-5 (2.3588 - 4. 2.0584 -+ 1.8243) =3.35690;

o _l#—y|_13.3588—3.3590| _0.0002
T B =%

=~ 7107 < -é- + 0.001;

hence, there is no need to reconsider the interval of calculations.
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We obtain y4=§—:=3.3590 (in this approximate number the first three
decimals are guaranteed).

" blSimilarly we calculate the values of y; and y,. The results are given in
able 2.

Thus, we finally have

y(1.5)=4.74.

4°. Adams' method. To solve (1) by the Adams method on the basis of

the initial data y(x,)=y, we in some way find the following three values
of the desired function g (x):

=y (X)) =y (X4 h), Ya=y (X)) =y (Xo+ 2h), Yy =Yy (Xs) =Y (X, + 3h)

[these three values may be obtained, for instance, by expandinf y(x) in a
power series (Ch 1X, Sec. 16), or they may be found by the method of suc

cessive approximation (1°), or by applying the Runge-Kutta method (2°)
and so forth].

With the help of the numbers x,, x,, x,, X3 and ¥, 4, ys, Ys We calcu-
late qo- ‘h- Qm EY WhEFE

Go=hy,=hf (xo, Yo) G =Hhy, =hf(x;, y),
‘?E:hyz;hf (X3, Y2)s q,z-hy,::hf (%3, ¥3)-

We then form a diagonal table of the finite differences of g:

x| w :Unig{ffin VTl g=yh | Aa=ausi~an =Aqf:?—=f.\¢n =%§':;+;—
Xy | Yo Ay, [ (X0, Yo 7o Ag, A*q, Ag,
X | Ay, f (X 4) t Ag, A%q, g,
X3 | Ya Ay, f 4s) | 92 Aq, Aq, A%q,
Xy | Vs Ay [ (x5, 4s) s Agy A%g,

Xy | Ya Ay, [ (xe Ya) | 4 Aq,

X5 | Ys Ay, [ (X5, Ys) qs

Xg | Ye
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The Adams method consists in continuing the diagonal table of differen-
ces with the aid of the Adams formula

1 5 3
Ay,,=¢?n +? Aqn—l +'i§ azqn—!+§ Aaqﬂ-—l' {7]

Thus, utilizing the numbers g,, Ag,, A%g,, A%, situated diagonally in
the difference table, we calculate, by means of formula (7) and puttingn=-3

in 1t, Ay,=q;+% 6q,+%&’q.+% A%q,. After finding Ay, we calculate

Yi=Ys+Ayy. And when we know x, and y,, we calculale g,=hf (x,, y,),
introduce y,, Ays and g, into the difference table and then f{ill into it the
finite differences Ag,, A%q,, A%,, which are situated (together with g,) along
a new diagonal parallel to the first one.

Then, utilizin% the numbers of the new diagonal, we use formula (8)
(putting n=4 in it) to calculate Ay,, y; and g, and obtain the next diagonal:
g5, Ag,, A%q,, A%q,. Using this diagonal we calculate the value of g, of the
desired solution y(x), and so forth.

The Adams formula (7) for calculating Ay proceeds from the assumption
that the third finite differences A% are constant. Accordingly, the quantitv h
of the initial interval of calculations is determined from the inequality
%cmio-m [if we wish to obtain the value of y(x) to an accuracy of

=),

In this sense the Adams formula (7) is equivalent to the formulas of
Milne (5) and Runge-Kuita (3).

Evaluation of the error for the Adams method is complicated and for
practical purposes is useless, since in the general case it yields results with
considerable excess, In actual practice, we follow the course of the third
finite differences, choosing the interval A so small that the adjacent diffe-
rences A'q; and A%g;,., differ by not more than one or two unitsof the given
decimal place (not counting reserve desimals).

To increase the accuracy of the result, Adams’ formula may be extended
by terms containing fourlh and higher differences of g, in which case there
is an increase in the number of first values of the function y that are needed
when we first fill in the table. We shall not here give the Adams forinula
for higher aceuracy.

Example 2. Using the combined Runge-Kutta and Adams method, calcu-
late to two decimal places (when x=1.5) the value of the solution of the
differential equation y'=y—x with 1{he initial condition y(0)==1.5 (see
Example 1).

Solution. We use the values y,, y,, y, that we obtained in the solution
of Example 1. Their calculation is given in Table 1.

We calculate the suhsequent values y,, y;, ¥y by the Adams method (see
Tables 3 and 4).

The answer to the problem is y,=4.74.
For solving system (4), the Adams formula (7) and the calculation scheme
shown in Table 3 are applied separately for both functions y(x) and z(x).

Find three successive approximations to the solutions of the
diflerential equations and systems indicated below.

3176. y' =x"-+4*; y(0)=0.

377, ' =x+y+2 2=y—2z, y(O)=1, 2(0)=—2.

3178. ' =—y;, y(0)=0, y' (0)=1.
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Table 3. Basic Table for Calculating y,, ¥, ¥, by the Adams Method.

flx, ) =—x+y; h=0.25

(Italicised figures are input data)

Sle |l w Ay y= | a=yp a%q, a%g,
3 =f txi.- yi)
ol 0| 1.5000 ] 1.5000 | 0.3750 | 00385 | 0.0101 | 0 0028
1lo.25 1.8920 ] 1.6420 | 0.4105 | 0.0456 | 0.0129 | 0 0037
olo 50| 2.3243 | 1.8248 | 0.4561 | 0.0585 | 0.0166 | 0.0047
3]0.751 2.8084 | 0.5504 | 2.0584 | 0.5146 | 0.0751 | 0.0213
41 ool 3.3588 | 0.6356 | 2.3588 | 0.5897 | 0.0964
5|1 25| 3.9044 | 0.7450 | 2.7444 j 0.6861 {
6 [1.50] -7 ( ‘
Answer: 4.74
Teble 4 Auxiliary Table for Calculating by the Adams Method
1 5 3
A!ﬁ'::‘?i‘I’ ? Aqi—s + '1'§ &zqa'-g'f*‘é' A’Qi—a

Value of ¢ @ _]2_ Aqu—, % A%G,_, -:— Adgi_, Ay,

3 0.5146 0.0293 0.0054 0.0011 | 0.5504

4 0 5897 0.0376 0.0069 0.0014 | 0.6356

5 0.6861 0.0482 0.0089 0.0018 l 0.7450
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Putting the interval A=0.2, use the Runge-Kutta method to
calculate approximately the solutions of the given differential
equations and systems for the indicated intervals:

3179. y'=y—x, y(0)=16 O<x<).

3180. y'=Z—y y()=1 (1<x<2).

3181. ' =241, 2 =y—x, y(O)=1, z(0)=1 (0<<x<<]).
Applying a combined Runge-Kutta and Milne method or
Runge-Kutta and Adams method, calculate to two decimal places
the solutions to the differential equations and systems indicated
below for the indicated values of the argument;
3182. y'=x+y;,; y=1 when x=0. Compute y when x=0.5.
3183. y' =x*-y, y=1 when x=0. Compute y when x=1.
3184. y' =2y—3; y=1 when x=0. Compute y when x=0.5.
3185. {y’ =—x-+2y-+ 2,
2 =x42y43z, y=2, 2=—2 when x=0.
Compute y and z when x=0.5.
3186. {y'=——3y-—z.
2’ =y—2z;, y=2, z=—1 when x=0,
Compute y and z when x=:0.5.
3187. ' =2—y: y=2, y'=—1 when x=0.
Compute y when x=1.
3188. 'y 41=0; y=1, y' =0 when x=1.
Compute y when x=1.5.

3189, i—?—i—l—%cos?t-—-o; x=0, x'=1 when f=0.
Find x(xn) and x' ().

Sec. 6. Approximating Fourier Coefficients

Twelve-ordinate scheme. Let y,=f(x,) (n=0, 1, ..., 12} be the values

of the function y={(x) at equidistant points JC"=E§- of the interval [U,2r],

and y, - Y2 We set up the tables:

Yo Yy Yo Ys Y Ys Ye
Yy Yio Yo Yu b

Sums (2]
Diiferences (A)

ty Uy Uy Uy
Ug Ug Uy
0 'tl. tl

Sums
Dillerences

Uy Uy Uy Uy Uy Ug Uy
Uy U Uy U, Us

Uy Uy Uy

Us Usq
Sums g, 0, O,
Differences Ty Ty
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The Fourier coefficients a,, b, (n=0, 1, 2, 3) of the function y=[ (x)
may be determined approximately from the formulas:

6ay,= g+ 8, 4 52+ Sa, 66, = 0.50, + 0.8660, - 0,
6a, = t,--0.866¢, - 0.5¢,, 6b,=0.866 (T, 4 T,),
6a,=5,— 53+ 0.5 (5,—s5;), 6b,=0,—03,

1=lo—1ts . 8}
V3 1 3
where 0.866= 5 1_1_0—@ a
We have

3
flx) = %ﬂ -+ E (@, cos nx -+ b, sin nx).

Other schemes are also used, Calculations are simplified by the use of
patterns.

Example. Find the Fourier polynomial for the funcfion y=f (x) (0=<x<<2n)
represented by the table

Yo Y | Y I Ys | Y Yy } Ys Ya Yg 1 Yy ’ Yo | Un
38 { 38 1 12 ’ 4 j 14“ 4 )-—18|—23|-—27{—24|8|32
Solution. We set up the tables:
y 38 38 12 4 14 4 — 18
32 8 —24 —927 —23
u({38 70 20 —20 — 13 —19 — 18
v 6 4 28 4] 27
7 3 70 20 —20 i 6 428
— 18 — 19 — 13 27 41
$ 20 5l 7 —20 o 33 45 28
t 56 89 33 1| —21—37
From formulas (1) we have
a,=9.7; 0,=24.9; a,=—10.3; a,=3.8;
b,=13.9; b,=—8.4; b,=0.8.
Consequently,
f(x) =~ 4.8+ (24.9 cos x -+ 13.9 sin x) -+ (10.3 cos2x—8.4 sin 2x) +
+ (3.8 cos 3x 4 0.8 sin 3x).

Using the 12-ordinate scheme, find the Fourier polynomials
for the following functions defined in the interval (0,2n) by the
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tables of their values that correspond to the equidistant values
of the argument.

. 3190, y,=—T7200 y,=4300 4,=7400 y, =7600

y, =300  y, =0 y,=— 2250 y. . =4500
y, =700  y,=—5200 y,=3850 y _ — 250
3191, y, =0 ¥,=972 y,=742  y, =5.60

y, =6.68 y,=897  y,=—6.81 Yy,, =4.88
y,=9.68 y;=8.18  y,=6.22 Y, =3.67
3192. y,=2.714  y,=1273 4 ,=0370 4, =—0.357
y,=3.042 4 =078 4 =0540 y  —=—0.437
y,=2.134¢ y, =049 y,==0.191 y,, =0.767

3193. Using the 12-ordinate scheme, evaluate the first several
Fourier coefficients for the following functions:

a) f(x)= Ql"nz (x' —3nx® +27°x) (0 < x << 2m),

b) [ () = = (x—m)* (0<x < 2n).



ANSWERS

Chapter |

1. Solution. Since a=(a—b)+ b, then |a|<|a—b|4|b|. Whence |a—b | ;-3.-
=>|a|—|b| and |a—b|=|b—a|>=|b|—|a|. Hence, ]a—b[:>|a[—| |
Besndes la—bl—lﬂ+(—b)|<Ial+l—bl—lal+lbl 3. a) —2<x<4;
b)x<—3, x>1;¢) —1<x<0; d) x>0. —24 —6; 0 0.9 6. 5. 1;

l"]':"; Vl"l'x" lxl_‘V‘l-i—x’. I]Vl—i—x’. ﬁ-ﬂ, E, 0. 7 f(X)=-—§'I+—3-
8. f(x)-—lx’-—-]—:jx+l 9. 0.4. 10. -é—(x—[—lxl). 1. 3a) —lgx <+ 0,
b)—w <x<+.12 (—w,—2),(—2,2), (2. +0).13.8) —0 <r<—V 2,
Vo2<x<+o; b) x=0, [x|=V 2. 14 —1<x<2 Solution. It should
be 24 x—x2=0, or x‘—x—-zqo that is, (x4-1) (x—2) << 0. Whence either
x41=0, x—2<0, i.e.,, —1l=<x<2 or x41=<0, x—2=0,i.e.,, x—1,
x=2, but this is impossib]e. Thus, — Il<x<<2 15, ——2<xs;0.
16. —oo <x<—1], 0y, 17, —2<x<2. 18 —l<x<], 2<x<+ 0.

19. ——:;—Qxe:;l. 20. 1 <<x<<100. 21. kngxékn—{—%(k:{}, +1, £2,...).

22. @ () = 2x*—D5x*—10, } (x) =— 3x® - 6x. 23. a) Even, b) odd, c) even, d) odd,
e) 0dd.24. Hint. Utilize the identity f(x)=—l2.[f (x)—i—f(-—x}}-i—-%—[f B —f (—%)).

26. a) Periodic, T=-—r§—’- i, b) periodic, T=2Tn, c) periodic, T =um, d) periodic

T =m, €¢) nonperiodic. 27. y-_—cﬁ.x’ if 0<xe<<c; y=b if c<x<a; =§sz1‘:ll

if l<sx<g Ssz—%; il e<x<a. 28. m=¢g,x when 0<<x<!;; m=

_.q,l + g (x—1;) when [, <x<li+iy; m=gq,,+qls+qs (x—1,—1;) when
Lt <x<l,+1,41,=1, 29 cp[lp(x)] 2”‘.1{:[(1;(::}]—2"” 30. x. 31. (x + 2)%.

a7. —%; 0; ’i-. 38. a) y=0 when x=—1, y>0 when x>—1, y<0

when x<—1; b) y=0 when x=—1 and x=2, y>0 when —1<x<2,
y<0when —w <x<—1 and 2<x<+w;¢c) y>0 when —co<x< -0}

d) y=0 when x=0, x=— ]fii_and 2= ]/-5. y>0 when ——ﬁ{.x-::(] and
J<x< + o0, y<Owhen —w << — ]/3 and 0<x< VT&; e)y=0when x=1,
y>0when—ow<x<—1and l<x<+ o, y<0 when 0<x<1 39. a) x=—é— (y—3)

(—mo<y<+w) b x=Vy+1 and x=—Vy+l (—l<y<+ o)
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) x=}/T=§ (—o<y<+w) d) £=2.10" (—0<y<+w) € x=

1 -
=§tany —%-Cy-c‘,'%). 40, x=y when —oo<y=<O0; x=V'y when

o<y<-+o. 41. a) yg=u" u=2x—5; b) y=2% u=cosx; c) y=logu,
u=tanvo, u=-;-; d) y=arc sinu, u=3, v=—x% 42. a) y=sin®x; b) y=

=arctan V' logx, c¢) y=2(x*=1) if |x|<l, and y=0 if jx|> 1.
43. a) y=—cosx?, Va<|x|<V2n; b) yg=log(10—10%), —ew <x<1l;
c) y=-§-when —ow<x<0 and y=x when 0<x<+ . 46. Hint. See Appen-
dix VI, Fig. 1. 51. Hint. Completing the square in the quadratic trinomial
we will have y=y,+a(x—x,)* where x,=-—b/2a and y,=(4ac—b?*/4a.
Whence the desired graph is a parabola y=ax® displaced along the x-axis by
¥, and along the py-axis by Yo- 53. Hint. See Appendix VI,
Fig. 2. B58. Hint. See  Appendix VI, Fig. 3. 61. Hint.

The graph is a hyperbola y=% , shifted along the x-axis by x, and along

the y-axis by py, 62. Hint. Taking the integral part, we have y=—§—§/

(x-{— %) (Cf. 61*). 65. Hint. See Appendix VI, Fig. 4. 67.Hint. See Appendix VI,

Fig. 5. 71. Hint. See Appendix VI, Fig. 6. 72. Hint. See Appendix VI,
Fig. 7. 73. Hint. See Appendix VI, Fig. 8. 75. Hint. See Appendix VI,
Fig. 19 78. Hint. See Appendix VI, Fig. 23. 80. Hint. See Appendix VI,
Fig. 9. 81. Hint. See Appendix VI, Fig. 9. 82. Hint. See Appendix VI,
Fig. 10 83. Hint. See Appendix VI, Fig. 10. &4, Hint. See Appendix VI,
Fig 11, 85. Hint. See Appendix VI, Fig. 11. 87. Hint. The period of the function

is T=2n/n. 89. Hint. The desired graph is the sine curvey =5 sin 2x with am-
plitude 5 and period m displaced rightwards along the x-axis by the quantity

| % . 90. Hint, Putting a=A cos ¢ and b=—A sin ¢, we will have y=A sin (x—g)
where A=V a*+b* and ¢ =arc tan( -%-)' In our case, A=10, ¢=0.927. 92,

Hint. cos® x=—12— (1 4-cos 2x). 93. Hint. The desired graph is the sum of the graphs

y,=x and y,=sinx. 94. Hint. The desired graph is the product of the graphs
y,=x and y,=sinx. 99. Hint. The function is even For x>0 we determine
the points at which 1) y=0; 2) y=1; and 3) y=—1. When x — -} c0,
y — 1. 101, Hint. See Appendix VI, Fig. 14. 102. Hint. See Appendix VI,
Fig. 15. 103. Hint. See Appendix VI, Fig. 17. 104. Hint. See Appendix VI,
Fig. 17. 105. Hint. See Appendix VI, Fig. 18. 107. Hint. See Appendix VI,
Fig. 18. 118, Hint. See Appendix VI, Fig. 12. 119, Hint. See Appendix VI,

Fig. 12. 120. Hint. See Appendix VI, Fig. 13. 121. Hint. See Appendix
VI, Fig. 13. 132. Hint. See Appendix VI, Fig. 30. 133.Hint. See Appendix VI,
Fig. 32. 134. Hint. See Appendix VI, Fig. 31. 138. Hint. See Appendix VI,

Fig. 33. 139. Hint. See Appendix VI, Fig. 28. 140. Hint. See Appendix VI,
Fig. 25. 141. Hint.
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Form a table of values:

{ o | 1 | 2 | 3 ] | =2 | —8
x 0 | 1 I 8 | o7 =] | =8 | =50
y o | 1 | 4 | 9 ! 4 | 9

Constructing the points (x, y) obtained, we get the desired curve (see Appen-
dix VI, Fig. 7). (Here, the parameter { cannot be laid off geometrically!)
142. See Appendix VI, Fig. 19, 143. See Appendix VI, Fig. 27, 144, See
Appendix VI, Fig. 29. 145. See Appendix VI, Fig. 22 150. See Appendix VI,
Fig. 28. 151. Hint. Solving the equation for y, we get y=+ V25— «2. It is
now easy 1o construct the desired curve from the points. 153. See Appen-
dix VI, Fig. 21. 156. See Appendix V1, Fig. 27. It is sufficient to construct

the points (x, y) corresponding to the abscissas ¥x=0, 4 g—, + a. 157. Hint.

Solving the equation for x, we have x==10 logy—y ™. Whence we get the
points (x, y) of the sought-for curve, assigning to the ordinate ¢ arbitrary
values (y > 0) and calculating the abscissa x from the formula *? Bear in
mind that logy—+—o as y- 0. 159. Hint. Passing to polar coordinates

r=V*®Fy* and tan tp=-%, we will have r=e? (see Appendix VI, Fig 32)
160. Hint, Passing to polar coordinates x=rcos ¢, and y=rsin ¢, we will

_ 3singcos ! : _
have r“cos’tp-i—siu’tp (see Appendix VI, Fig. 32) 161. F=32+41, 8C
162. y=06x(10—x); Ymax=15 when x=5. 163, = sin x; ym“={1—b

2 2
whenx*_—i;—. 164. a) x,=—}?-. X==2; b) x=068;, ¢) x,=1.37, x=10;

d) x=040; e) x=150; f) x=086. 165. a) x,=2, y,=5; x,=5, y,=2;
b) x,=—3, yl.=_'2; Xy==—2, Yfp=—3; Xsg=2,Y4y=3;x,=3, ¥,=2; ¢) Xy =2,
0 =2; x,=3.1, y,=—2.5; d) x,=~—36, y,=~—3.1; x,=~—27, y,=29;

Xy =29, pyy=1.8; x,~34 y,=~—16; e) xlr_ﬂ-,yl:ﬁ; Xy = @
4 2 4

y==.,._._'/_._2, 166. n > —!—_- .ayn=4,b) n>10; ¢) n=32. 167. n;:»-l———
2 ]/-3 e

—1=N. a) N=9; b) N=99; ¢) N=099. 168 52% e<1). a) 002
b) 0002; c) 0.0002. 169, a) logx <—/N when 0 <x < 8(N); b) 2*> N when

x>X(N); o) |fW|>N when |[x]1>X(N). 170, a) 0; b) 1;¢) 2; d) 3:75

Lo =2 e L as 3 1%, 1 177 278, L. Hint
) ) i 3

Use the formula l’+2‘+...—|~n’=~l€n (n4-1)(2n+41). 179. 0. 180. 0. 181. 1.,

182. 0. 183. m. 184. 0. 185. 72. 186, 2. 187, 2. 188. oo. 189. 0. 190. 1. 191. 0.

1 a—| i
192, oo, 193. —2. 194. . ; s ; ' y — =i
o 2. 194. . 195 5 196 TR 197. 3x%, 198 1. 199. 5 -
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4 1 | 3 1
200. 3. 201. 3 202, g 203. —E§" 204. 12. 205. g - 2086. -—55. 207. 1.
1 1 a 1
08. . 209, — . 210, ——= . 211. 0. . m— . —— . =
208 2]/3 i/ 21 3 1. 0. 212 5 213 5 214 5
215. 0. 216. a) -;-sin2; b) 0. 217. 3. 218 2 219, -% 220, m. 221, l2
222, cosa. 223. —sina. 224, m. 225. cosx. 226. —]—/:. 227, a) O; b) I,
2 1 ji | 1
298, — . L e . . s .
28 % 229 5 230. 0. 231. V.._ 232. (n m*), 233 5 - 234 1.
2 2 1 i I
235. 3 - 236. i 237. = 238. n. 239. T 240. 1. 241, 1, 242. T
243. 0 244, % 245. 0. 246. e~'. 247. e 248, e~' 249, ¢4,
1 1
250. e*. 251. e. 252. a) 1. Soluation. lim (cosx)* = lim[1—(1 —cos x)] * =
X—=0 X—=0
Qsinfl—x—
| ol B
a 2aln‘j— *
— lim (l—25in* i) ¥ —1lim (1 —2sin? i) —
x>0 2 x>0 2
( Qslrw-i)
Hm | _ 2
_ X-+0 b 4
2 2
| 2sin® 3 Sino 1\ 2
Since lim\ — = — 2 lim P = —2:]. lun 1 =0, it follows
X—0 X X—0 X X =0

x
2

1
e 1
that lim (cosx) * =e®=1. b) Ve Solution. As in the preceding
e

X—>0

2sin? T -
1 lim - — 2 Sm’i-
2 r ‘
case (see a), lim (cos x)” —=c . Since lim\———/ =

X0 X0 x?
sin — * » { = .3
— —921im 21 x__1 , 1t follows that lim (cosx)* =e * =
x>0 [ —f_ 4x2 2 X—=0
: 1
]/. . 253. In2. 254, 10loge. 255. 1. 256. 1. 257. = 258. 1. Hint.

Put ¢*—1=aq, where a—0. 259. Ina. Hint. Utilize the identity a=¢'" @
260. Ina Hinlt. Put%:a, where a — 0 (see Example 259) 261. a—b.

262. 1. 263. a) 1; b) % 264. a) —1; b) 1. 285. a) —1; b) 1. 266. a) 1; b) Q.
267, a) 0; b) 1. 268. a) —I; b) 1. 268. a) —I; b) 1. 270. a) —; b) + .
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271. Solution. If x# kn (k=0, £ 1, £2, ...), then cos’x <1 and y=0;

but if x==4kmn, then cos®x=1 and y=1. 272, y=x when 0<x<l;y=_;_.

when x=1; y=0 when x> 1 273. y=|x| 274 y=-—% when x < 0; y=0

when x=0;yu—;—- when x>0, 276, y=1 when O0x<l; y=x when

l<x <4 o, 276. 4%1—0 277. x,-r—%—; xg—+o. 218. = 279, 2naR.
—
o0 & 281 1L os2 YU o84 timac,=L . 285 % . 286, k=1,
e—1 3 n n-> 3 2
e? —1
4 \ x4
b=0; the straight line y=x is the asymptote of the curve y=——

241"
9287. Q™M =Q, (1 .}_f:l_t)"_ where k is the proportionality factor (law of

compound interest); Q;=Q.*. 288, '|xt:>—::-, a) \x]1>10; b) \x|> 100;

¢) | x| > 1000. 288. Ix—l]-qf— when 0<e<l; a) |x—1]<0.05;

5
b) [x—11<0.005; ¢) |x—1|<0.0005 200 [x—2|< =0 @ &=0.L;
by 8=0.01; ¢) 6=0.001, 291. a) Second, b) third. _%-, -g- 292. a) 1; b) 2,

c) 3. €93 a) 1; b) 71—: ) %; dy 2; e) 3. 295. No 206. 15, 297. —1, 298. —1.

299, 3. 300. a) 1.03(10206); b) 0.985(0.9849); c) 3.167(3.1623) Hint.

Vio=ViFi=3 ]/1 +L. 4 10.954(10.954). 301. 1) 0.98(0 9804);
2) 1.03(1.0309); 3) 0.0095(0.00952); 4) 3.875(3.8730); 5) 1.12(1.125);
6) 0 72 (0.7480); 7) 0.043 (0.04139). 303, a) 2; b) 4; ) -;—-. d) -g— 307. Hint.
If x>0, then when |Ax{ <x we have l m—— Vxl=
=1ﬁxlf(V-m+ ]/."k)eé:IAx U]/-'i:. 309. Hint. Take advantage of the
inequality |cos (x4 Ax)—cos x]<<| Ax| 310. a) x % 32- 4 kn, where k is an

integer; b) x # kn, where & is an integer 311. Hint. Take advantage of the
inequality ||x+4Ax|—|x||<<|Ax| 313. A=4. 314. [(0)=1. 315. No

316. a) [(0)=n; b) f(O)=5;c) [(0)=2 d) f(0)=2¢) [(0)=0; ) [(0)=1.

317. x=2 is a discontinuity of the second kind. 318, x=—1 is a removable dis-
continuity, 319. x=—2is a discontinuity of the second kind; x=2 is a removable
discontinuity 320. x=0 is a discontinuity of the first kind. 321. a) x=0 is
a discontinuity of the second kind; b) x=0 is a removable discontinuity. 322. x=0
is a removable discontinuity, x="Fkn (k= 141, 4+2,...) are infinite discontinuities

323 x=2nk + 5 (k=0, +1, £2...) are infinite discontinuities.

324, x=rkn (k=0, + 1, + 2, ...) are infinite discontinuities. 325. x=0 is a
discontinuity of the first kind. 326. x=— 1 is a removable discontinuity;
x=1 is a point of discontimuity of the first kind. 827. x=-—1 is a discon-
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tinuity of the second kind. 328. x=0 is a removable discontinuity, 329. x=1
is a discontinuity of the first kind. 330. x=3 is a discontinuity of the first
kind, 832. x=1 is a discontinuity of the first kind. 333. The function is
continuous. 334. a) x=0 is a discontinuity of the first kind; b) the function
is continuous; ¢) x=4&n (& is integral) are discontinuities of the first kind.
336. a) x==k (k is infegral) are discontinuities of the first kind; b) x==£4
(k # 0 is integral) are points of discontinuity of the first kind. 337. No, since
the function y=E (x) is discontinuous at x=1. 338. 1.563. 339. Hint. Show
that when x; is sufficiently large, we have P (—x,) P (x,) <0.

Chapter I

341. a) 3; b) 0.25; c) 2h-+h*. 342. a) 0.1; b) —3 ¢) /ath—}/a.
344. a) 624; 1560; b) 0.01; 100; ¢) —1; 0.000011. 345. a) aAx; b) 3x*Ax+

2 o gl .. _2xAx+(Ax)*  Zx+Ax
+3x (Ax)® 4 (Ax)%;  3x*4-3x Ax+(Ax)*; c) R FA) T T P (xF Ax)?’
S - 1 2% (24¢ —1)
d Ax— : 3 9x (28%_ 1) :
A b e~ o (R e Ll Ax

fy n £L2F, ﬁln(l—l— ‘%Y‘-“) 346. a) —1; b) 0.1; c) —h; 0. 347. 21,

348. 15 cm/sec. 349. 7.5. 350. jlk Ax)—f (x) .361. [’ (x)= lim“x"t'm'}_f (x) .
Ax AX—>0 Ax

352. a) i_:?; b) j_;?:: lim %.tq.), where ¢ is the angle of turn at time ¢.

Al

353. a) %; b) i_IT—; lim i_r where T is the temperature at time f.

Atl-»0
354. ﬂ: lim ﬁ@, where Q is the quantity of substance at time (.
dt At |
Am

Am g 51
i =3 b) lim =——  356. —_——==—0.16; b) = =~—0238;
¥ & on D) A0 D —% ) =3

8 ._.25..% ~—024% y,_,=—02. 357  sec’xr.  Solution.

y' = lim tan (x+ Ax)—tanx__ . sin Ax _ Jim Sin Ax

Ax +0 Ax Ax-»0 Axcos xCos (x--Ax) ™ Axaso Ax

! 1 2 2. s 1
lim = = sec*x. 398. a) 3x*% b) — = ; ¢ =
xax 0 COS x COS (x + Ax) cost x ) ) o ) Vo

d —L . 35 1 Solution. F8)= lim (B8 +A)—f@® _

8in? x p 12 Ax—>0 Ax

3/8 1. Av -] .
= lim '/8—1‘ ﬁx_l/ 8= lim 3 8_]_6*-_8 e
Ax—o Ax Axso Ax[ 3/ B+ A+ )/ B+ A0 8+ /8]

1 :
= lm - =—. 80. [ (0)=—38, 1)=0,
x>0 3/ B+ AP +23/B+Ax +4 12 Fe P

f(2=0. 361. x,=0, x,==3. Hint. For the given function the equation
ff(x)=f(x) has the form 3x*=x® 362. 30m/sec. 363. 1, 2. 364, —1.

365. [ (xo)=:_Tl. 366. —1, 2, tan p =3. Hint. Use the resuits of Example 3
X

X

0 2/ (Ax)? 1
and Problem 365. 367. Solution. a) f' (0)= lim '/( ) = lm ——— =4 !
Ax—»o Ax ﬁx—WV Ax
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5_-___
b) f'(l)=lim‘/1+Ax l=lim__1-.-_=0°; 2 f,_(2k+lﬂ)=

Ax—o Ax Ax—>0 ]5//(_5;)'3 2
2k + 1
cos( u—}—Ax)l
=lmi 2 — dm LAy gy ()
AX->—0 Ax AXx-——=0 Ax 2
= lim SMAY] 36k, 5xt—12x242. 369, — L4 2x— 248 370. 2ax+b.
Ax-»+0 Ax 3
15x2 _ 6axt 4

371. . 372, mat?=14-b(m+4-n)tm+"=1 373,

.34 —= .
Vaip #

1 8

- 8 o + 4b
375. 2x " —bx* —3x74, 376. 7w x*. Hint. y=x*x =N QT g
3 3x® y/ x
— — 2-—-— —
——. 3. Semal, gy SRR gy
3 /2 (c+dx)* (x2—b5x - 5)* xt (2x—1)?
381, —— L . 382, 5cosx—3sinx. 383, — 0 34, — —2
:(1—V2) sin® 2x (sin x—cos x)?
2 r_ _ ‘ X
385, f*sini. 386. y'=0. 387. cotx S0 x 388. arcsin x+_—ﬂlf1—x’ =
389. xarctanx. 390. x%*(x-+7). 391. xe*. 392. e-’f";Q. 393, 5‘4;"5 .
394. e* (cos x—sin x). 395. x%e*, 396. e* (arc sin x4 ﬁl—) . 397. x—(—?-]—q-“ﬂ) -
Vi—¢ In®x
998. 3x*lnx. 899, = + “‘—x—%. 400, ‘2“”1’3 — . 401. sinh x+x coshx,
2x cosh x—x? smhx 4 —3 (xIn xJsinh x cosh x)
402. T . 403. —tanh®x., 404. e
405 - 406 1 arc sinh x +——l—— arcsin x
' e ' Viee Vite '
21 2
407. x— ¥V x®*—1 arc coshx. 408. 14 2x arc tanhx. 410. 3a (ax—l—b )
I (I—2t* ¢ ¢
M1, 12b+186%. 412, 16x (342 413, ) 44, ——%

(2x—1)*" CVi=

» 3 /A2 tan? i
415, '—bi': i 416. — V VEE == 418. 1 tan X+taﬂ X .
v/ (a+ bxd)? X cos? x

419, =1 . 420. 2— 15 cos? xsin x, 421, —10°% 20yt x—sin-tf 4
2sin?x V cot x sin® 2¢
; i3
fcos~BE, dgs, —RX gy SOME 4, Beosxbddoy
(1—3cosx)® costx 2 ¥ 15sin x—10 cos x
2¢cos x 3 sin x 1
425. — : 426. 5
3 ‘f/sm x costx 2Vi—x ¥V 1+ arcsinx
’ —
427, 1 3 (arc sin x) 428, 1

2(1+x)V arctanx B Vi— (1 4+ x%) (arc tan x)?
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e* 4 xe* 41 430 2e* —2% In 2 5intx

2V xe* x| © 3/ (2F—2% iy
xaos(x‘-—Sx—f—i)———-‘-’-—a—-. 433. —asin{ax+f). 43%4. sin(2{ o).
x2cos? —

429,

432. (2¢x—5) X

cos X —1

435. —2_-—— . 436
s x

437. xcos2x®sin3x? 438. Solution.
x
sin? —
‘ —2 1 1
1 2 o —
o T T T 2x)':= T e 8 43 440 —_—— 44‘. =
Vl—-(2t)2l V1—4x % ]fx‘-—-l 2 x—xt 14«2
a42. ]+‘ 443. —10xe™®. 444, —2¢5~%* In5. 445. 2¢10%* (1 +xIn 10).
—ak

446, sin2'--2 cos2In2. 447, ———— . 448 2 .
1l/-l——e""r 2x 47
— X -
450. 2x 5L, 2Inx 1 459, (e*+5cosx) ¥V i—xt—4 '

] —x? X xln x (e* 4-5sin x—4arcsinx) V' 1—x2

453. I ! 454.

(14+1n?x) x (1 4x%)arctanx 2x yln X+ 1 M 2(V x+x)’

455. Solution. y’ = (sin? 5x)’ cos? -'—;- + sin® 5x (cos’ % ) =3 sin?bxcos 5x 5 cos’% e

449. cot xloge.

+-sin? S5x 2 cos % — sin %) -:l,:= 15 sin®5x cos Sy cos’% —?;'.2—51“' bx cos % sin % :
3 = 7 i
4x43 457 x4 4x—6 458. X x—1

. ) — . 459. .
(x—2)* (x—3)* (1—x?)* 2V %1

1 xZ (l+ V‘i')' q fer—
460. e P 461- —————— 462. i~ | 463. x& (l __'_xl)l .
V (@27 V2 o x v
1
464. . 465. 453 (a—22° — 5x%).
V1) (-2 ek

¢ =1 Ly iyt =1 s —
2abmnx"~" (a 4-br") 487, »r—1 ‘ 468. a—3x ]
(@—bx")™+? (x4 2)* 2Va—x

4 3242 (a+- b+c}x+ab+b€+ac 142V g
69. 470.
2 V{x+a) (x+b) (x+0) sVy V g+ V)
y—a
471, 21t 3/ 3D, 412, — Y= a3, —L . 474 sin*xcostx.
il V @ay—y*)’ Ve+T
475, — ' 476. 10tanbxsec*5r. 477. xcosx’. 478. 3t sin 26,

sin® x cos* x .

COS2% 4o _ (@—P)sin2x a3 0
sin® x 2 ¥V osin®x+p cos?x
_1_ arc sin x (2 arc cos x—arc sin x) 485. ______2;-_____ 486, |

2 Vi—x ' x VYV 2axr—1 1442

487. ”r““’”"']f""" 488, —— . 489, ]/‘ﬁ‘ .490. 2 Vai—xt,
(1—x%’ Va—bxt a+x

. S 492, arcsin VY % 493. — . .
Vox —x ¥ T=25xarc sin 5x

456,

466,

479. 3cos xcos 2x. 480. tan®*x, 481.

484.

491.
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494‘ _l-_- W 4950 Sin u . 4%- ; .
xV1=In*x 1—2x cos a4 x* 54 sin x
X sin® x @ v/ slndx

497. 4x .'/B-:x . 498, m . 499, i V-E i 500. sin 2xe .

501. 2m®p (2ma™* 4-bY’~'a™* Ina. 502. e (acos p¢—p sin pt). 508. e** sin fx.
504. e~ * cos 3x. 505. x*~'a—*2 (n— 2x* In a). 508. -——%— ytanx (14 VcosxIna).

1
3cot —In3 —_
% 2ax+5 509. ! 510. Vx

o T T T TR | 508- . et | e = eme
(xsin _1_)' ax* -+ bx ¢ Va2 1+ V%
X

1 519, =2 513, —Ltan*= 5ie 2+

V 2ax + 22 xIn*x x* [ xt—x—2

2_
y=5ln(x—2)—31n (x41). 515, ——> —10x+13 516 .

(x—1) (x—2) (x—3) ’5 ?h:'xcos::
e —6x 16a In* (ax + b)
517. ¥V x'—a'. 518, g ma—mm 5 S
2 __ . s ™+ e Y Osinlnx. 523 —
Ve+a x* —qt sin? x
2
Vite . 525, x—|—1 . 526. g [ garcinix §, 9 1L 9 (1 —arc cos 32)].
xi x— ]/-1—9Jc2
597 ( i sin ax)acos ax cos bx + b sin axsia bx 1

cos bx =l r=r-
3 34 cos? bx cos? bx s 142sinx

529. ! 530. 1 408 4 !

{1 +1In%x) y V1—xtaresinx x  «x I/_l—zlnzx
531, —— . 532 — % 533, — = .. p34 T
x(I41n2x) "~ x4 at—2 cosx Vsinx xi—1
535, — —, . 636. —S"¥_  £37  Gsinh®2x.coshr. 538. ** (acosh Px 4
1+x (i_x’)m
2x

+ P sinh fx): 539. 6tanh®2x (1 —tanh®*2x) 540, 2coth 2x. B4l. —Fe— -
at+x
1 1 —1 2

—— 543. . 544. —— . 545,
xVintx—1 cos2x sin x 1 —xt

547, xarcsinhx. 548, a) y'=1 when x> 0; y'=—1 when x < 0; y" (0) does

not exist; b) y'=|2x|. 549. y'=%- 550. f’(x)={ ::":h:’?let.: Ef:[l'ﬂ
Lt

507.

511.

Hint.

520.

524.

542,

B46. =xarctanhx

552. —+ . 553. 6. 554. a) [_(0)=—I, f,©@=1 b)f. (0):%,

f+(0)-*—-:f-‘)f (=1, f, (0)=0; d) f_(0) =f, (0)=0, ) f_(0) and

. (0) do not exist. 555. 1—x. 556. 2+{—3. 557. —1. 558. 0 561. Solu-
-+

tion. We have y'=e~* (1—x). Since e""‘=%, it follows that 5,;'—i (1—x)

or xy'=y(l—x) b566. (l-|-2x)(1+3x)—1—2(1+x}(1+3x)+3(zx+1)(l—!—2x}
567, _(x+2) (5x* 4 19x +- 20) 568 —4x4-2

4+ D (430 ' 2 VY x(x—1)(x—2)
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3x2+5 X 570. (x—2)* (x*Tx 4 1)

3(+1) ¥ oet1r (x=1) (x—2) (x=3) V (x — 1) (x—3)* °

— 9% . 572, x* (1 +1Inx). 873. x** +1 (] 4-2 In x)

3e—1)'h (x+2)"s (1 43)"h '
Vz-—

574, §/ % 0% 575 ( +—Inx) 576. x"xx"(?i—-i-lnx—l-ln‘x).
577. xtinx 512 +cosxlnx ). 578. (cos x)** (cos xIncosx — sinx tan x).

x 1 1
b79. — — . . =
79 1+ x) [In (l+ = +1+x] 580 (arc tan x)* x
X ' |
" [lnarc tan x+{1 +xMarctanx| - aBl a) EI0Ea
2 —_— 2
1 ) X, = {2, 583. 1 584. —p"

569,

671.

0 XS

. 582,

x

o 14 5e?

s85. L2—1)  ggg 2. s, At ses tans see. — 2
1—2¢* 3/t t(tt+1) a

590. -—%—tant. 591. — tan3t. 592. g’ ={ —Lwhen £ <8 or gt

na] o

|1 when £ > 0.
5M. tan{. 596. 1. 597. . 599. No. 800 Yes, since the equality is an iden-

2 b’ _ x(3x+ 2y) 2y) .'/
tit —_, — - i
ity. 601. 602 808, —=5. 604, —E SRR

__]/___ 2y® 1 —y® 608, 10
L. I =y F2xy 1+ 3xy?-}-4y3 -~ 10— 3Lt,sy g

y costy y 1—x2—y? ,
. — al 6 L4 T R - L] e N A T TR '] z. . —
609. —1. 610 o 1 611, = l+x3+y* 612. (x+y)*. 613, y

_ 1 l Y s Y X-+y
g s e 614. =+e*. 8I5 = 616. ="

o17. YEXVEXE g0 wlny—yy . 620
cx—y Vi |2 + y* ylnx —x x
arc tan 2 =63° 26’. 623. 45°. 624. arc tan%'—:%" 21‘, 625. (0, 20); (1, 15);
—1

(—2, —12). 626. (1, —9). 627. y=x'—x+1.628. k= . 620, (% —%)

631. y—5=0; x4-2=0, 632. x—1=0; y=0. 633. a) y=2x; y=-—~.—,12— X;

by x—2y—1=0; 2+4+y—2=0! c¢) 6x+42y—n=0; 2—by-+3n=0;
d) y=x—1;, y=1—x; e) 2x+y—3=0; x—2y+1=0 for the pofnt (1, l).
2x—y+3=0; x+4+2y—1=0 for the pmnt (—l 1). 634. Tx—10y+46=0,

2 Y
10x+7y—~34=0. €35. y=0; (n+4)x+(n—4)y— 1/.2=0. 636. 5x - 6y—
—13=0, 6x~—b5y+421=0. 637. x4-y—2=0. 638. At the point (1, 0):

l_":: at the point (2, 0): y=—x42; y=x—2; at the point

2
3—x
3, 0); Yy=2x—6; y= 5"

a) 0; b)-;-; c) 0. 622. 45°%

y=2x—2;, y=

639. 14x—13y-+12=0; 13x+ 14y—41=0.



406 Answers

640. Hint. The equation of the tangent is 5’:——;-59—:1. Hence, the tangent
1]

crosses the x-axis at the point A (2x, 0) and the y-axis at B (0, Qy,,ll: Finding
the midpoint of AB, we get the point (x,, y,). 643. 40°36’. 644. The para-

bolas are tangent at the point (0,0) and intersect at an angle
arctanlas"ﬁ' at the point (1, 1). 647. §;=8,=2, t=n=2V} 2.

7
i _oneint ! . t . " .
648. TR 6562. T =2asin 5 tan~2~, N_2asln§ i Sy=2asin itan—f :
S,=asint. 653. arctan-;—. 654. %+2(p. 655. S;=4dn%a; S,=uq;
t =2na Vl+4n’; n=a V1+4n’: tanpn=2n. 656. Sy=a;, §,= L

@ )
t= Va‘+g§: n= %EVI.I’—I—Q:; tan p=—q,. 657. 3 cmjsec; 0; —9 cmisec

658. 15 cm/sec. 659. — o m/sec. 660. The equation of the trajectory isy=x tan a—

g : _ v, sin 20
—_— The range is _— The velocity,
207 cos*a a
V % - el ; ) . Upesina—gt
v, —20,8t sin a+-g*t* the slope of the velocity vector is Ui cosa

Hint. To deterinine the trajectory, eliminate lhe}rarameter t from the given
system. The range is the abscissa of the point A (Fig. 17). The projections
of velocity on the axes are f—il; and g—:{ The magnitude of the velocity is

dx\?2 dy\2 ¢ . T

5 -+ ik he velocity vector is directed along the tangent to the
9 9
8’ 2
663. The diagonal increases at a rale of ~ 3.8 cinfsec, the area, at a rate
of 40 cm®/sec 664. The surface area increases at a rate of 0 27 in?%sec,

trajectory 661, Diminishes with the velocity 0.4 62,

the volume, at a rate of 0.05 & m*/sec. 665. % cm/sec 666. The mass of the rod

is 360 g, the densily at M is bx g/cm, the density at A is 0, the density
at B is 60g/cm. 667, 56x°--210x%. 668. e*' (4x*-1-2). 669. 2 cos 2«

2(1—x% —X 2x
370. —— 671. e 672. 2 t i
3 (1) V@t oy e
673, =y 2xarcsinx oo, 1 osh X . 670, ' —6. 680, f7'" (3) = 4320
l—x2 (1—x¥) ' a a
24

681. y":m' 682. y¥'= —64sin2x 684. 0; 1;2; 2. 685, The velocity

is v=>5; 4997, 4.7. The acceleration, a=0; —0.006; —0.6. 686. The law
of motion of the point M, is x=acoswt, the velocity at time ¢ is
—aosinwt; the acceleration at time 7 is —aw®coswt. Initial velocity, 0;
initial acceleration: —aw?®; velocity when x=0 is —aw; acceleration when
x=0 is 0. The maximum absolute value of velocity is aw; the maximum
absolute value of acceleration is aw®. 687. y'™ =nlg™. 688. a) n! (] —x)~"+D,

by (—1)"+1 1.3... (2”:‘3) . 689, a) sin (x‘l‘ n%; b) 27 cos (21 -l—nl;—) :

2% x
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e p=y (R—1)! (—1)"+'al 2n! .
¢) {(—3)"% - d) =1} 'm: ) T—T—W' f) m.
(=11 (n—1)la®

g) 2"-1 Sin 2x+(n‘_ l) —2_] ) h) (ﬂx _I_ b)rl : 690' a] x.ex ‘{- ng”}

b) 27=7e=2% | 9( — 1)yt 20 (— }"—'x+”‘(" )(_1)“-=]: ¢) (1—=x%) x

X €Oos (x+ —;)—an cos (x-l— ————-zl)n)-—n(n—l) cos | x4 (n -2)“);

2
d) (=1 '1‘:‘24_: n—3) [x—(2n—1)]; ) (—1):2]_(!:—4)! for n=4.

2%x
691 y (0)=(n—1)! 692. a) 9% b) 2242; ¢) —V I—t% 693. a)
1 _ -~ i

-1
asin®f ’

) St c)4 =% d) i - 694 ) 0ib) 2ete!, 695. a) (1+£2)x
a sin 5

x(1436%;  b) t-(—:{—:),. 696. (ms';ff;:”),. 697, (%‘;)!: =1.

609, 253‘:‘ . 700. 4‘*’(;;:5:':;:;5, ?. 701. m-ﬁe'f (1 43¢ +:=). 702, m":"“.

W = a6~ 08—

707. —Qy;;l'g. 708, :i%*:ﬁty“y)" g;" _;;!i‘ 709. %—é. 710. —%,

2
711, a) -;-13-; b) __3:';1' . 712, Ay=0.009001; dy=10.009, 713. d (1 —x*)=1 when

x=1 and Ax:-——;‘—. 714. dS=2x Ax, AS=2x Ax-+(Ax)®%, T17. For x=0,

n i
718. No. 719. d12—7—25—0.0435. , 720. dy=m—~_0.00037.
—mdx dx dx
721. dy= —-«.0 0698. 722. AT 723. m 724, VT‘!——__{;.
adx e —2dx 1+cos<p
725. -————x=+a= 5 726. 2xe dx. 7217. lnxdx. 728. w 5 729- w
X
eldt IUK-[—SJ —ye Ydx _y x+_.f
0.~y T3.— el dx 733, — =5y dx T Tl dr.
y—xe Y
735, :?dx 737, a) 0.485; b) 0.965; ¢) 1.%; d) —0.045; &) = +0.025=0 81,

788. 565 cm®’. 730. V5~=2.25 Y 17=4.13; V70=8.38; V/640=~25 3.
740. J/10=2.16; }/T0~4.13; }/200~5.85. 741. a) 5; b) 1.1; ¢) 0.93;

(A2 _ 2

d) 0.9. 7T42. 1.0019. 743. 0.57. 744. 2.03, T8, — D0 7g9, —XUD
[21l—--x’) /2 (1—x%) 72

(dx):.  751. -—q;-—-(d )2, 762, —e=%x

X (x*—6x 4 6) (dx)*.  753. %. 754. 3- 27 sin (2,\'—]—5 -+ -§~) (dx)*.

2cos x sm 2

750. (—sinxlnx+
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755. e*“%*%sin (xsina+na)-(dx)®. 757. No, since [ (2) does not exist.

758. No. The point x=g is a discontinuity of the function. 762. E=0,

763. (2. 4). 765. a) g=§; b) §=T". 768. 1nx=(x—1)—-;—(x—1)=+

o XA
+ =37 B where E=14+0(x—1), 0<0< 1. 769. slnxzx_ﬁ_f_“_sm £

!
s 5 o
where §,=0,%, 0<0,<1; sinxzx—;—!—{-g—l--—-%!—slnﬁ,, where E,=0,x,
x! x' xu-l xn &
X L == s — —p —
<O, <. 710, e*=1+ x+2! +3! +"'+(n—-1}t+nle' where E=0x,
8
SEIU_:T; in both cases §=0x;
3

—1—. 776. Solution. We have

3
0<9<]. 772, Error: a)—lﬁ—x——a )
o0 +h'
O< @< 1. T73. The error is less than

1

b)
3
51

<o

1
|

u—i—-x_ x\2X X ’
]/u—x_(l-l_?) (l——E) . Expanding both factors in powers of x,

, £\ " 1 x I & x\ * 12 .3 22

@

x

Multiplying, we will have: ]/a+x“‘*-l—|—i+£ Then, expandi “
Plying, : R TR TR ' p ng e in

X

rowers of -x—. we get the same polynomial e?al—l—f—-{—ﬁ 777 —-L
a a  2a*° : g <

2
778 ® 779. 1 1780. 3. ?8[.-%— 782. 5. 783, w. 784, 0, 785, —g_
7686. 1. 788, % 789. 1. 790. 0. 791. 4. 792, o forn>1; a for n=1;
0 for n<1 793, 0. 795. % 796, 11"‘2 797. —1. 799. 1. 800. &', 801. I.

802 1 &03. 1 804. %. 805. —;. 806. el' 807. 1. 808. 1. 810. Hint,

z
Find lim Fs w here S=-}§2-.(u—sina) is the exact expression for the area

u >0 <
Sbh

of the segment (R is the radius of the corresponding circle).

Chapter 1li

811. (—o, —2), increases; (—2, o), decreases. 812. (—co, 2), decreases:
(2, ), increases, 813. (— o, o), increases. 814. (—, 0) and (2, ),
increases; (0, 2), decreases 815. {— o0, 2) and (2, o), decreases. 816. (— 0, 1),
increases; (1, o), decreases. 817, (—oo, —2), (—2, 8) and (8, o), decreases,
818. (0, 1), decreases; (1, «), increases. 819. (—o0, —1) and (I, ), in-

creases; (—1, 1), decreases 820. (—oco, ), increases 821, (0, —:— , de-

1
creases; (?, co), increases, 822. (—2, 0), increases. 823. (— »,2), decreases;
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il

(2, o), increases. 824. (—oo, a) and (a, o), decreases. 825, (i—co, 0) and
(0, 1), decreases; (1, o), increases 827, Ymax =7 when X=7. 828. No

extremum. 830. yin==0when *=0; ymin=0when x=12; yy,x = 1296 when x=6.
831, Ypin=~—0.76 when x==0.23; yp,x=0 when x=1; yyuin=—0.05 when

x=1.43, No extremum when x=2. 832. No extremum 833. Ymax=—2

when ¥ =0; Ymin=2 when x=2 834. y"‘“:l% when x=3.2. 835. Ymax=
s - 2

=—3 V3 when x=—%_; Ymin=3 V'3 when x:v—ﬁ_ 836. ymax=]/-7.2

when x=0 837. ypax=—V 3 when x=—2V3; ymin=V3 when x=2V3.

838. Ypin =0 when x= 11, ymax=1 when x=0 839. ymi“::—-—l/_3 when
1 Y 1
X = k—ﬂg)n; ymax=§l/3 when x=(#k g (k=0, £1, +£2, ...

5

2
840. ¢y =5 when x=12 km, ym,(=5cos—ﬂ when x:zl?(k;};—g—)n; i
=—5ms-§-‘when =12 (ki%) T Ymin=1 when x=6(2k4DHn (k=0

£1, £2 ). 41 ppig=0 When x=0. 842. yop=——~ when x=—

843. ymnx:ei. when x=eL,:_f)"min—"50 when x=1 844, ygin=1 when

4
x=0 845. yminz—'-;:‘ when x=—I1. 846. Yy n=0 when x=0; Ymax =2
when x=2 847. ymi,—e when x=1. B848. No extremum. 849. Smallest
value is mz—% for x=—1; greatest value, M:=-12— when x=1. 850. m=0

when x=0 and x=10; M=5 for x=5. 85, m=—% when x=(2% +1) J ;

M=1 for =E‘- (k=0, 31, 42, ...). 852. m=0 when x=1; M=a when

x=—1. 853. mu——l when x=—1; M =27 when x=3. 854. a) m--—§
when x=1; M=:256 when x=5; b) m=—1579 when x=—10; M =23745 when

x=12. 856. p=-—2, g-=4. 861. Each of the terms must be equal to —;—

862. The rectangle must be a square with side é— 863. Isosceles. 864. The

side adjoining the wall must be twice the other side 885. The side of the
cut-out square must be equal to %—. 866. The altitude must be half the
base., 867. That whose altitude is equal to the diameter of the base

. Altitude of the eylinder, 35_. radius of its base R]/ , Where &
is the radius of the given sphere.  869. Altitude of the cylinder, RV'2

where R is the radius of the given sphere. 870. Altitude of the cone, %.’«‘
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where R is the radius of the given sphere. 871, Altitude of the cone, %R.
where R is the radius of the given sphere. 872. Radius of the base of the
cone %r. where r is the radius of the base of the given cylinder. 873. That

whose altitude is twice the diameter of the sphere. 874. ¢ ==, that is, the cross-
section of the channel is a semicircle. 875. The central angle of the sector

is 2n ]/-g— . 876. The altitude of the cylindrical part must be zero; that

2 2 3
is, the vessel should be in the shape of a hemisphere, 877. h=(I’ -d? )' :
878. --+-——-l 879. The sides of the rectangle are a¥V 2 and bV 2, where

0
a and b are the respective semiaxes of the ellipse. 880. The coordinates of

the vertices of the rectangle which lie on the parabola (%a; 42 ]/%1)

881. (:I: .'_/1? —2—) 882, The angle is equal to the greatest of the numbers

Aarc cos 3 and arc tan i 883, AM =g —fv '/p 884, :

k A Ve +yT

885. a) ,:v.u—_yr_..F ]/""' y=d l/_ 886, % — ]/2aQ

Puin=V 2aqQ. 887. ¥V Mm. Hint. For a completely elastic impact of two
spheres, the wvelocity imparted to the stationary sphere of mass m, aiter
impact with a sphere of mass m, moving with velocity v is equal to

2myu

. 888, n= ]/NT- (1f this number is not an integer or is not a divisor of

n; -+ m

N',we take the closest integer which is a divisor of V). Since the internal resistance
2

of the battery is "Nr the physical meaning of the solution obtained is as

follows: the internal resistance of the battery must be as close as possible to the
cxternal resistance, 889. y:%h. 891. (—o0, 2), concave down; (2, ),

concave up, M (2, 12), point of inflection. 892, (—o, ™), concave up.
893, (— <0, —3), concave down, (—3, o), concave up; no points of inflection.
894, (-—-oo —~6) and (0, 6), concave up; (—6, 0) and (6, ), concave down;

points of inflection M, (—ﬁ, —%) ,0(0, 0), M, (6, 5 895, (— o
—V'3) and (0, V'3), concave up; (— V'3, 0) and (V'3, w), concave down:
points of inflection M, , (+ V'3, 0) and O(0, 0). 896 ((4!:-{—1) =

(4k+3)-§), concave up; ((4k +3) -25 (4k—|—5)§) , concave down (=0,

+1, 42, ...); points of inflection, ((Ek—i—l-}g, 0). 897. (2kn, (2k-+1)m),

concave up; ((2k—1) n, 2kn), concave down (k=0, +1, +2, ...); the abscis-

sas of the points of inflection are equal to x=/kn. 898. (0, T/.l—_;), concave
e
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| 1 B W e :
down; { ——=, o ], concave up; M = __ 2 ) is a point of inflection,
(Ve' ) ’ (Ve’ Ee')

809. (—oo, 0), concave up; (0, o), concave down; O(0, 0) is a point of
inflection. 900, (—o0, —3) and (—I, o), concave up; (=3, —I1), concave
down; points of inflection are M, | —3, :TO and M, (—l. ez 90 Xx=2,

=0. 902, x=1, x=3, y=0 903. x=42, y=1. 904, y=x. 905. y=—r,
left y=x, right. 008, y=—1, left, y=1, right 907. x== 41, y=—x, left,
y=x, right 908, y=—2, left, y—=2x—2, right. 909, y=2 910, x—=0,
y=1, left, y=0, right. 811, x=0, y=1. 912. y=0. 913, x=—1.
914. y=x—m, left; y=x-4mn, right. 915. y=a. 916. y,,x=0 when x=0;
Ymin =—4 when x=2; point of inflection, M, (1, —2). 917. ymax=1 when

=1+V3 Ymin==0 when x=0; points of inflection M, ,( 41, %
918. Ymax=4 when x=—1; Y, =0 when x=1, point of inflection, M, (0, 2).
919. Ymax=8 when x=—2, yni =0 when x=2; point of inflection, M (0, 4).

920. ymi,,,:—-—zm when x=0; points of inflection M, ,(+£ V5, 0) and
Mg il 21, ]25) 921, Ymax=—2when x==0; ypin==2 when x=2; asymp-

totes, x==1, y=—x—1. 822, Points of inflection M, ,(LI, F2);, asymptote

x=0. 923. ymsx—=—2 When x=—1; ymn=-4 when x=1; asymptote, x==0.

924. ypin=23 when x=1; pomnt of inflection, M (—V , 0);  asymptole,

x—0. 925. ymx:—l- when =0, points of inflection, M, ,{ +1,

3
asymptote, y=0 926. pyx — —2 when x —0; asymptotes, x =42 and y=0.
927. Ymin==—! when x=—-1; yp,x=1 whenx=1; ponts of inflection, 0 (0, 0)

.
and M,',(J:QVS. i-hzi ; asymplote, y=0 928. yn,«=1 when x—=4;

point of inflection, M (5, E). asvmptotes, x=2 and y==0. 929. Point

9
of inflection, O(0, 0); asymptotes, v =42 and y=0. 930. ym_]x:—-%
wlien x=?; asymptoles, x—=0, x=4 and y=0 931. Ymu=—4 when

x=-=1; Ynw=4 when x=1; asymptotes, x=0 and y=3v 932. A (0, 2)

and B (4, 2) are end-points; t;mxﬁQVQ when x=2 933, A{—8, —4) and
B (8, 4) are end-points. Point of inflection, 0(0, 0). 934. End-point,

A (=3, 0); Ymin=—2 when x=—2. 935, End-points, A(— V'3, 0), 0(0, 0)
and B(V3 0); ¢ Jm,‘_]fz when x=—1; point of inflection, M{VIS—{—?.V-:T,

5]/1 +-_). 936, Ymax—=1 when x=0, points of inflection,

M, s (&1, 0). 837. Points of inflection, M, (0, 1) and M, (1, 0); asymptote,
y=—x. 938, yy.x=0 when x=—1I; ymm=——l (when x—D) 939. Ymix=2

when x=0; paints of inflection, ,(;{:l /2) asymptote, y=0.
940. _;mm:—-fl when x=-—4; ymxﬁ*l w len x = 4; point of inflection, 0 (0, 0y,

asymptote, y=0. 94. ypin= V4 when ¥=2, Ypin= 13/4 when x=4¢4;
Umax=2 Wwhen x=3. 04 Ymin=2 when x=0; asymptote, x=12,

943. Asymptotes, x=+2 and y=0. 844. yminz% when x= Vﬁl
2
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Ymax = 4]
max'—“"_il/_;

and M, (3, —3—) asymptotes, x=+1 945. ypipn=

( ' ".‘/100

of inflection, M(2 ; asymptote, y=0. 947. Points of inflection,

when x=—3; points of inflection, M, (—3, -—-%) 0 (0, 0

3
—— when x=6; point
V2

of nflection, M ) ;asymptote, x =2 946. gm“_—..-;-when x=1; point

Ml(—i’»a, 1;]_::) and M, (-—a. ?;). asymptote, y=0. 848, yp.x=2¢* when

x=4; points of inflection, M,, (8&221/_2 . eT); asymptote, y=0.
3

#49. yrax=2 when x=0; points of inflection, M, , (ﬂ:l —5)' 950. ymax=1

when x=41; Umia =0 when x=0. 951. Ymax=0.74 when x=e*=7 39;
point of inflection, M (¢7»=14.39, 0.70); asymptotes, x=0 and y=0.
2

a da
952, Ymin = _%e when x=ie_" pf."nt of iﬂﬂection, M (V-Ei : _—':}_ea) i
2

053. Ymin=¢€¢ when x=e¢; point of inflection, M (e’. %—);asymptote.le;

I
y—+0 when x-—0. 954. yma,‘:eilaﬂ.fﬂ when x=e—,-—l:=—0.85;

1
Ymin=0 when x=0; point of inflection, M(-!-—l-u—o 63; —--.._D 37)

y—-0asx -.-—1+u (limiting end-point). 955. ym,—=1 when x= & V2; points
of inflection, M, ,(£1.89, 1.33); asymptotes, x=41. 956, Asymptote,
y=0. 957. Asymptotes, y=0 (when x—++4 o) and y=—x (as x —— »).

958. Asymptotes, x=—-el— , x=0, y=1; the function is not defined on the
interval —-},(}]. 859. Periodic function with period 2n, yminz—V§
when x=?n+2kn; Ymax= Vﬁ- when x~.—-—:—‘+2k:rc (=0, +1, X2, ...)

points of inflection, M, (%n—]—lm. 0). 960. Periodic function with

period 2m, I itni== —E ¥'3 when x=—g—u+2kn; Yimax = g—lfﬁ when

-——-—l— 2k (R=0, +1, £2, ...); points of inflection, My (kn, 0) and
Ny (arc cos ( —T)-[—ﬂm. -l:iﬁ VE) 961. Periodic function with period 2x.

‘On the interval [—mn, =], y“’“=i_ when x=;l;—’—t- Ymin=—2  when

X= 1M, Yuin=0 when x=0; points of inflection, M, . (£0.57, 0.13) and
M, o(+2 20, —0.95). 962. Odd periodic function with’ perlod 2%. On inter-

val [0, 2], ypmax=1 when x=0; ypiz=0.71, when x=T; Ymax=1 when
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x =%: Ymin=—1 when ¥=1; ymn.x=—0.71 when x=%.“;y“““=_l When

x=—g-:n‘.; Umex—=1 when x=2mu; points of inflection, M, (0.36, 0.86);
M,(1.21, 0.86); M,(2.36, 0) M,(3.51, —0.86); M,(4.35, —0.86);

M¢(5.50, 0). 963. Periodic function with period 2n. y,,lm:—--g when

2
2 3
x=~3—+2kn; ym“=-—-—'/2: when x=—1-:rt+2kn: (k=0, X1, £2, ...);
asymptotes, x=%—n+kn 964. Periodic function with period mn; points of
Ve

2 3
inflection, Mk(i;—-kk )(k 0, £1, £2, ...} asymptotes,x=3—n+kn.
965. Even periodic iunctmn with period 2x On the interval [0, =

4
— ——— when x=arccos ——; =0 when z==m; = — — whe
Ymax 3]/‘3 .Vr3 Ymax Ymin 3‘/-3\\! n
X =0r¢ cos ——L_‘.} s Ymin=0 when x=0; points of inflection, M, (Eﬂ ; 0) -
M, (arcsin ¥ 2, 4V"'f'). ( _aiean Y2 4VT _
(rc 5 TR M,| m—arc sin 3 57/ - 966. Even
periodic function W1th period 2. On the mterval [0, %] Ymax=1 when
2
=0; —  when X == arc¢ cos - | — when
X Ymax ™ 3'/- ( '/- Ymin= 3]/-5

X == aIC COS lg s Ymin=—1 when x-=xn; points of inflection, M, ( 0)-

13 4 13
M: (dll.. w08 ]/'i-g, ',H ﬁ)' M,(RI'C COS( 18) 9 l/ )

967. Odd Tunction. Points of mﬂectlon. My (kx, n) (=0, +1,

968. Even function. End- pomts, , 2(£2 83, —1 57) yn —-1 57 when x = 0
(cusp); points of inflection, M, ,(£1.54, —0.34), "989. Odd function.
Limiting points of graph (——1 '— ) and (1, + o). Point of inflection,

0 (0, 0); asymptotes, x=+1. 970. Odd function. ymax=%—l+?kn when
X :%-{—kn; ym;n=%n+l+2kn when x_—-i;’—:r:-l—kn:; points of inflection,
M, (km, 2kn), asymptotes, x=2k2+ln (=0, +1, £2, ...). 971. Even
function. yma=0 when x=0; asymptotes, y=—-g- x—1 (as x +-—o0) and
Yy =% x—1 (as x -+ ). 972, Ynin=0 when x=0 (node); asymptote, y=1.
973. Ypin =1 —|—-§- when x=1; Yymax= %ﬂ"——l when x=—I; point of

inflection (centre of symmetry) (0, n); asymptotes, y =x+42n (left) and y=x
(right). 974. Odd function. ymiz=1.285 when z=1; ymu—-l 856 when

x=—1; point of inflection, M(O. —f-);asymptotes, y=-2—+n (when

x +—o) and y=—;- (as x -+ ). 975. Asymptotes, x=0 and y=x—In2,
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976. Ymin=1.32 when x¥=41; asymptote, x=0. 977. Periodic function with

period 2. ymin=—é- when x=—3-:rc—]—2kn; Ymax =€ When x=£—+2k:rr.

= V.i =1
(=0, 1, £2, ...); points of inflection, M, (arcsin V2 +2%kn, e 2 )
]/‘_ V.:!—l\
and N\ — arcsin +(2k+1)m, e ® - 978 End-points, A(0, 1)

and B(l, 4.81). Pomt of inflection, M (0.28, 1.74). 979. Points of inflection,
M (0.5, 1.59); asymptotes, y=0.21 (as x -~ —w) and y=4.81 (as x -+ ®).
980. The domain of deﬁmtmn of the function is the set of intervals (2kn
2kn +m), where k=0, +1, £2, ... Periodic function with period o,

Ymax =0 when x—_——;-"+ 2knt (k=0, +1, +2, ...); asymptotes, x=km.
981. The domain of definition is the set of intervals [(2&—%—)3,

(Qk +%) n], where %k is an integer. Periodic function with period 2.
Points of inflection, Mg (2&n, 0) (=0, +1, +2, ...); asymptotes,

x=4 -g——i-f!kn. 982. Domain of definition, x > 0; monotonic increasing

function; asymptote, x=0. 983. Domain of definition, |Jc-—2k:c[<:—;E

(=0, 41, 2, ...). Periodic function with period 2a ygu,,=1 when

x=2n (k=0, 41, +2, ...); asymptotes, x————g——i—kn. 984. Asymptote,

y=1."57, y—-+—1.57 as x-+0 (limiting end-point). 985. End-points,
l —_—

Ay 2 (£1.31, 1 57); Ymin==0 when x==0. 986, yminz(?)e =~0.69 when

x=%%0.37; y—+1 a x -0 987. Limiting end-point, A (40, 0);

Vaav=2t €= 1.44 when r—e= 2.7% asymptote, y=1; point of inflection,
M, (0.58, 0.12) and M, (4 35, 1 40). 988. Xy ==—1 when (=1 (y= 3): Uy =1
when ¢ ——1 (x=3) 989. To obtain the graph it issufficient to vary ¢ from 0 to 2n

xmin———a whent{=n(y=0); xpmsx=a when { =0 (y 0); Ymin —— a (cusp) when

t-——}- 5 {x=0); Ymax==-+ a (cusp) when t__ {x=0); points of inflection
n 3n on n a

when b=ri g T T ("zig‘/—-g.y=iﬁ)-

990. xmin= —--lé- when t= —1 (y=: —e); yma,=—g- when f=1 (x=¢); points of

inflection when t=—V'2, ie., ( '{;3 ' -—]/'ﬁ'éy_‘> and when t=V¥2,
e 2

e., (V§ e %, 'f:f) ; asymptotes, x=0and y=0. 981. xpju=1 and ymjp=1
e

when ¢=0 (cusp); asymptote, y=2x when ¢ - 4 . 992. Ypjn=0 when £=0.
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4__ 2,2
993. ds:idx, cosg:i; si“az__x_. 994, dsH- ]/a: {.'J: ”
Y . a at—x

a? —x? bx
y Sino = ————,
Var—cix?

=— Vpr+yfdx; cosaz= ——t— - D SN G= b . 096, ds= ]/—-—a‘x,
V ity Vit d

Cos = ‘/-?; siua:-—-]/;—. 097. ds—cosh—&-dx, COS @ == :

cosh —_
[ 2

€cos ccza where ¢= Va’ b%, 995, ds=

V at—cixt

sina- -tanhE 998. ds—azasin-ﬁdt COs 0. =Sin ;, sin o= cos = 2 999. ds=

=3asinf cost df; cosa= —cos {; sina=sint. 1000. ds=a V 1 4-p*dp; cosf=

1 d yf——3 1 a
= —, lOOl.dS:—-Vl-{—(P:d v o8 P=— ———— , 1002. ds = do;
Vil * 4 4 Vityr cos® 2 ¥

2
sin f} == cos —% 1003, ds=acos % dp;  sinf =cos 2 1004 ds=

2

2
—r VTT (Walidg; sinp= ,..._.*___H‘UM),. 1005, ds=2 dg; sinp=cos 2.

6
1006. K =36, 1007, K_-—-; 1008. K 4= _
312 13913
3, at both vertices. 1011. (—9- 3] and (9—- —3
alV 2 8"’ 8"’ *

In 2 V-né - (1 +9x4)31’= (b‘x’—}-a‘y’]’f’”
1012, ( 5 —E_) 1013. R-—(T . 1014. R= = .

3
gasin?tl. 1017. R=:laf|. 1018. R=

b
b,, Kp=—. 1009. K=

1010. K =

1015, R = . 1016, R=

=|r Vi3-&T|. 1019, R::|i acos 2|

3 2
1116 3\t 1 -
1023. (__f a, ?a). 1024. (x—3‘j’-|—(y—-2—) = 1025. (x4 2)*4

+(y—3)2=8. 1026. pY’:%(X—-p)‘ (semicubical parabola). 1027. (a}{)?—l—

1020. Ry=lpl. 1022. (2,2).

2 a

+ (b}’)_' =¢?, where ¢®=a*—b2
Chapter IV

In the answers of this section the arbitrary additive constant C is mmt-

fed for the sake of brevity. 1031, %a’x“’ 1032, 2x*-4x*3x. 1033. -——-+

n—1
n

. 2,7
platig +agx 1034, atet L By, %"‘Vsz. 1036. 1

n—1"*
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1037. {/ nx. 1088. a‘x——g—a%x%{-Ta_}x_:_ 'f; 1089. -%x—’sﬂ--[-
1A, Sx‘l?s/;“wl;/;_ﬁ V% 0. Ei:f’ "g:;r::ﬁ 21:1‘-[ 1;'
1042. 2a Va_}—*iax-]—tli Vahi—ﬁx’+52;a_; 1043. % arc tan ‘;_?.
1044, 2]*1’-ﬁln i:_ ]lf-rll_g' 1045. In (x4 m:x—’). 1046, arc sin 5 ';._2

1047. arc sin ﬁ——ln (x+ V' x*F2). 1048%. a) tanx—x. Hint. Put tan®*x—

1
cosh? x

=sec®*x—1; b) x—tanhx. Hint. Put tanh’x=1— . 1049. a) —cotx—

X
—x; b) x—cothx. 1050. T_(.'%i" 1051. aln

¢ ‘ Solution. S dy =
—.—x ——
=—a5di:x)——-—alnla-—xl—k-alnc:aln — ’ 1052, x41Inf2x+1].
Solution. Dividing the numerator by the denominator, we get E'Ui?=
_ 2x 43 _ 2dx d(2x 4 1)
1-1-2 1 Whence Q"md“‘gd""‘gz +l —}-S “HetT =
=x+In|2x+41|. 1053. —-—;ix+%]n|3+2x|. 1054. —:——Fln]a-l—bx_

i 2 H
1055. -g—x+baazaﬁln|ux+ﬁj.1056.%+x+21n]x——1|. 1057. %—}—2.::—}-

4 " |
+ln|x+3]. 1088, %—+%—1—x’+2x+31n|x—-l|. 1059. a%x +2ab In | x —a| —

b 1 xdx (" (x41)—1 _
_x—-ﬂ' “}60" h'llx—'—l!-f-m. S( +l)a—— (X+1)= dx==

9
Sx—}-l S(H_“, 06, —VT=y. 1062~ ¥ @b

dx 1 (d(x*+1) —

1063. ¥ x*+ 1. Solution. | ——me == { £ 7)1, 1064
Vil .ou on Va Qj‘]/-xzﬁ-l X 11.1084.2 ¥V x+
V71— 2]/2‘

+ln’x 1065 L e B ]/E 1066. —— In
2 - S VIs 5 S 4V |V T7+2V 2
Va+t+b+x Va b x
In . 1068, x—¥ 2 t —_— .
2Va—6¢ |Varb—xV a—b ‘ 73 B¢ V?
1069. —-(—g—-}——;— In| a”—x’l) 1070. A In (x’+4)+arctan =
, 3 =
In(2 V 2x+ V7 +8x%. 1072. 7% arc sin ]/
2V { + V 7+ 8x%) X

1073. ln Ixt—2|— = In —==|. 1074. —=arc { =X —
| 3x | 2V | VIr Vs V. ~——=—=arc tan Tx

1067. I

1071.
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—itn (5x2 4+ 7). 1075. —V5x’+ —i—]f_ln (xV 54 VB2 £1).1076. V *—3 +
+3ln|x+ VP —4|. 1077, -é-lnlx‘——Sl. 1078. %In(Ex’—}-B}.

1 x2

1079. b2 In (a®x® —|—b’)+% arc tan — . 1080 arc sin - 1081. —;— arc tanx?,

2u b )

x 2
arc tan ——)

1082, %-lnlx'—i— Vx"—l.|. 1083. 3 V (aresimnx)'. 1084, ( i

3 4
Tare $am Ol e
1085. %In(l T Ax%)— Y {arc ;a“ . 1086. 2V Inx+ V1t .
X

@ —mx __I_ 2—3x { - a a .

1087. = e . 1088. 311]44 . 1089, e‘4-e~* 1090. 5 e” +2x

2K 5 x
_.E _—H— ._.1__ t_]_..__..b_, i __2_ 83X |
ze ¢. 1091 Im_lnb(bx %) =26 1082, sr— V a** — Va
1
| 1 x2 = 2 V3%
1093. —2912_“1. 1094. m? 5 1095. -_g ., "]96. mﬁ 4
x 4

1097. In[e*—1]| . 1098. _'ﬁ; V (@a—be5) 1099, %‘-’(e“ +1*. 1100. %-—

1 . 1 1 2% 1 X
_..3 11121]1 (2‘:-{-3} Hlnt;xmzu—--—“ﬁ" ( 1—"-2-3?5) . 1ot1, T arc tan (a%).

1 4e~ g 1
1102. —-2—b1n T—o=h% | 1103. arcsine 1104. —-E-cos(a+bx}.
1105. ¥ 2sm ﬁ 1106. x—%}cos?m:. 1107. 2sin V¥ x.  1108. —In 10X
x  sin2¢

xcos (log x) 1109, 7 . Hint. Put sin'x:%—{l—cos 2¢). 1110. —%-I—

S92 Mint. See hint in 1109 1111, -‘—tan(ax-{-b). e, — otaex

—

3
113. aln!tan%l. 1114, ln ,ta (5" “\| 1115. -}-ln tan—f’-’%'!f—
1116. R, tan (x?). 1117, i(:Os(l—m:), 1118. x—-—cotx V 2—

2 2 V2

~ V¥ 2In tanx';—zl- 1119. —In|cosx|. 1120. In|sinx|. 1121. (a—b)X

xin [sin 2|, 122, 51n sm-’5‘—|. 1123. —21n|cos V' x|. 1124. —;—Inx
né

ssin(®4+1)]. 1125, Injtanx|. 1126, SaintX . qio7. 200X
2 a ] 24

1 | —e

1128, —— . 1120, —-§1n (3-+cos3x). 1130. —— V Cos 2x.

1131. —%Yu+3cos=x)=. 1132, %tan'%—. 1133. %Vtan’x.

B
3 cot Tx 1 ax
1134. - 1135.+ 3 ( dx) . 1136. -u—(ln Itanilﬁ—?mnax).

14-1900
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1 2 3 x 1
137, = Injb—acotdx|. 138 —= cosh bx — sinh5x. 113 =5 +-4— sinh 2x.

1140. lnltanh%—l, 1141. 2arctane®, 1142, In|tanhx|. 1143. Incoshx.

1
| h .1145.—-—5 5—x%)°, 1146. —-ln xt— 4x+1| — X
1144. In|sinhz] / B—x)° | TV
xarc tan ——. 1148 L 1149. ]/-— arc tan | x ]/E)-
e ,/- ' 2 2 2
e G V34 VIFEE). 150, 2 X a2 x4 1] 1Bl ——
V3 ° =2 Ve
1 1 1
1152. In|x+4cosx|. 1153. -;5-(ln|sec 3x+tan3x|+m). 1154, Nt .
— 1
1155. In|tanx<4 ¥V tan*x—2{. 1156, V 2 arc tan (x V2)-—- TS
1 3 3 2
1157. a;':;. 1158. ]/tﬁ 1159, -%—arcsin(x‘). 1160. ltana;\r--—x.
161, X _ 5% 1162, arcsin 2%, 1163. a Intan i+3‘-)| 1164. —?/(l—l—lnx)‘
) T 2 ’ 22 ' 4 .
= 2
1165. —2ln|cos P'x—1|. 1166, %ln tang— . 1167,  efretanx
2 2 ———
+-]—n—-il_|——-—x—)+arctanx. 1168, —In|sinx4-cos x| . 1169. V2In tan2‘;_2 —
—9x—V 2cos ——. 1170. x-+ "_VE . 1171. In| x|+ 2arc tan x.
V2 V2 x+ V7?2
1172, %, 1173 V._arcsm V +V4—3x2 1174. x—In(l4€%).
1175. - arc tan x =0 1176, In(e* + Ve”‘—2) ll??ilnltanaxl
Va2 —0? +b
X 2
T ot 2+1In x (a’“""’i)
1178. —ﬁcos( +%). 1179, 1 |- 180 — 5 :
2
1181. —e 180 % 1182, -;—arcsin (w) 1183. —2cot2x. 1184, (arcsin x)”
V2 2

— V1=x*. 1185, In(secx+ VsecTx+1). 1188. 1 1n V B+ sin 2x

4V5 V 5—sin 2x
tan x dx dx
87. —— . =
11 V_ arc tan ( V3 ) . Hint S 1 +4cos?x S. SO x L 2C08tx

'§2 2 — |
= gﬁ% 1188, -E'V [in(x+ Vl + x9]%. 1189, 5 sinh (x* 4 3).

—

190, da“"'“ 1191, a) 1= arccos =2 when x> ¥ % b) —In(l e~

V2
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c)s_t)(‘r’""‘:’)" d) % VEFI—2VEFl; e In(sinx4 ¥V TTsinta).
1192 l[(2x+5)“—5‘2"+5)"]. 1193. Q(E'_i +2 ¥V x—2n|1+ Vﬂ) ,

4 12 11 3 2
1194. In —:’;ii—:—:% . 1195. 2arctan Ye*—1. 1196. Inx—In2in|lnx+4
x
3 Nt
4+21n2]. 1197. ‘-m—":l“—’-‘)—. 1198, %-(e"—?) VEFI. 1199. %(cos'x—ﬁ}x
X ]/cos x. 1200. In ——-1———-—l Hint. Put .r=—:-. 12014, —% lfi——x’-{-
|
+%arc sin x, 1202. —'g ]fﬂ—-x’—-—g- V 2—x2. 1203. lfx’—a’—

—a arcws%. 1204. arc ccs-i—, if x>0, and arc cos (_'}E) if x<0*) Hint.

Put x=ti. 1205. ¥V x*+1—In

substitution x=-‘1;- may be used in place of the trigonometric substitution.

ﬁ.@i_l . 12086, _._E'%;_'i‘f,ﬂote.The

1207. —;- Vl-x=+—éarc sin x. 1208. 2arcsin ¥ x.  1210. %Vx“-—-a’-[»‘

—i—%zlnlx—l—lv’x’—a“]. 1211, xlnx—x. 1212, xarctanx——é—ln(l—l-x‘).

1213. xarcsinx+ J 1 —x* 1214. sinx—xcosx. 1215. xs{; 3x+ Cﬂsz .
x+1 xIn2+41 e .
1216, — et 1217. —~ ox|nEg 1218. 57 (9x*—6x + 2). Solution. In place

of repeated integration by parts we can use the following method of undeter-
mined coefficients:

S x*e*dx=(Ax*+ Bx+C)e**
or, after differentiation,
x%"™ = (Ax® 4 Bx + C) 3™ - (2A x -}- B)e®*,
Cancelling out e** and equating the coefficients of identical powers of x, we gef:

1=3A; 0=38+424; 0=3C+ B,

2
whence A:—é-; B=——; C—.:%. In the general form,SP,,(x)e‘”‘dx:.

=Q, (x)e®*, where P, (x) is the given polynomial of degree n and Q, (x) i:s
a po1ynomial of degree n with undetermined coefficients 1219. —e=* (x?45).
x

Hint. See Problem 1218*. 1220. —3¢ *(x*49x?-54x-162). Hint. See

") Henceforward, in similar cases we shall sometimes give an answer that
is good for only a part ol the domain of the integrand.

14
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2
Problem  1218*. 1221, —1> 2"‘+S"’82". 1222, = "‘f"*‘““sin T
+2x:'5cos 2x Hint. It is also advisable to apply the method of undeter-

mined coelfictents in the form

S P, (x)cos Bx dx=Q, (x) cos fx + R, (x) sin fx,

where P, (x) is the given polynomial of degree n, and Q,(x) and R, (x) are
polynomlals of degree n with undetermined coefficients (see Problem 1218%).

3 3
1223. lnx—-—%. 1224. xln®x—2xinx+2¢. 12925, -—1—')16’5—-1-

- 2 o
1226. 2]fxlnx—-4 Vx. 1227. x—2}— arc tan x — 2 1228, 2 arcsmx-—z-x

X arcsinx-l—-% VI—2. 1229. xln (x4 V 1+ ) — V142 1230. —x cot x -
x x e (sin x —-cos x)
+In|sinx|. 1231. — x-l—ln 1 tan 5 I . 1232. ;

2
3% (sin x 4-cos x In 3) e%* (a sin bx— b cos bx) X .
1 + (l!‘l 3)' . 1234. a’ + b! " 1235. E [Sln (‘nx)_

-X2

1233.

(1), 1237. 227 F (¥ x—1). 1238, (—J—;-—x’—l—

—cos (In x)]. 1236, _e

=1, 1—x infx 2inx 2
+3X)1n I——"+§—3x 1239, D) ln l+ —x. 1240, -—T—--‘T—ﬂ—“x— .

I 2
1241. [in(ln x)— 1]-in x. 1242. —3-arc tan 3x — +l(l52 In(9x241). 1243. T+ x X

% (arc tan x)!—x arc tan x+-— In(l4+x%). 1244, «x(arcsinx)*+2 YV 1—xIx

arcsinx X
in s ] .
A ~1+ Vi—x

— 2 -
xarcsin YV x+2 V % 1247 J“'“""2"+l"|°'”52"l—"— 1248, £ _ %

2 4 2" 2
x(cns 2% —523in 2x—l). 1940, _J_ZC’_+ xcos (2 In x) 4 2x sin (21nx)

10
X l xdx
1250. ~ AT l) — arc fan x. Solution, Putting u=x and dv= Eri”
| x*dx _ X
2 1) T 2+ T
X

A 1 /1
-I'S 2(1"*1-1) 2(::’-}-1] 5 arc tanx+C. 1251. 2a’( arc ta“%-l—

. x
+m). Hint. Utilize the identity IEE-,-{(J:'-i—a‘)—-x’]. 1252. 5 X

|
)(]/-a‘-—x’+92— arc slnﬁ-. Solution, Put u= ¥ a*—x* and dv=dx; whence
w2
&u=—-—-—w——- andv=x;wehave | Va@—rde=xV F—xi— e 0L
at— 8 Va’-—-—x’
(' — ) —a?

my | at—xt— V. - dx=x Va'—x'-—j ]/'a'——x'dx-i—a’j
al—x2

% arcsin x—2x. 1245, —

L3

1246. —2 V¥ T—xx

we get du=dx and U= —

Whence S T

]fu'—x' ’
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Consequently, 2S V a®—x2dx=x V a*— x*-}a?® arc sin —:—. 1253. —;— VA + x4
—}-%In1x+ V A+x|. Hint. See Problem 1252*. 1254. —-’2‘- V=<4

—I——g- arc sin % Hint. See Problem 1252*, 1255. —é—arc tan x—;—l . 1258. -fl?x

x 2 6x—1
| . 1257. ——— arctan ——. 12568, -— ll'l .1'.2—-7 1 —
X332 Vi Y W=+ 19+ 073 V

x arc tan 2:/-;; . 1259, iln (x*—4x +5)+4 arctan (x —2). 1260. x——? In (x* 4-

2
2¢-+3
I/_ ;
. 1263. arcsin(2x—1). 1264. In

+3x+4)+'/ arc tan 1261. x+43In (x*—6x -+ 10) 48 arc tan (x—3).

1262. L‘g arc sin o=

x+%+i’x’+px+q -

5
1265. 3 l/x2—~4x—|—5. 1266. —2 V¥ 1 —x—x*—9arc sin V+5I i
1267, —V5x= T 4+ — (.:VB_L_JF Vs—x=~2x+1),
V V 5
-_x ——
1268. In | ————1. 1269, —arcsin —. 1270, arcsin ————— (x> V 2.
l+l/1-—x= xV (1—0) 2
1271. —arcsmx_:_l_ 1272. i-_,i;—l Vx‘+2x—i—5+21n(x-|—l+ V x4+ 2x +5).
1273. 2-XT4] Vx ——x=-|--:?arc sin (2¢x — [). 1274. 2x+l l/2—x—x’+
2x 41 1 x‘—3 d—smnx
+—arc an 22 qous: Tln'x_‘—-_l . 1276. V__arct I/Ti .
1277. In (e"—l-—é--}— Vl+e" +e"‘) 1278. —In|cosx 424 l/'cos‘x+4r:{rsx+ 1.
, 2+ 1Inx 1 x-+b
—n?x—
1279. — ¥V 1—41nx—1In*x—2arc sin V3 ; 1280, a—bln i
I (x— L x +3)°
B -9 y = A
1281. x+3In|x—3|—3In|x | 1282 1.‘?[“ RS .
_L iﬂl
(x— 1) (x—4)° xt(x—4) . | x
1283. In T . 1284.5x +1In — . 1285. F+1n il
(x—1)?
1 | X x 11 8
L o=t v I S =
9 1 8 27 30 Xx—5
s B T T L e B
1 X 1 x—1
1290, —2{1!2-—-3)7-{—2)2‘ 1291. x4 In W—-}——ll 1292. x-}—TIn P _—

1 l .
_-Earctanx. 1293. lnlx 3| = ln|x 1|+Elnu +4x+b)+“ux
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1 1 1 2% —1 s 1

X arc tan (x4+2). 1294. —G—'In -——-_—x-_T_—l—]——V._a arc tan -———-ﬁ . 1295, TV ﬁx

S+xVo+1 V2 lf2 - x=+x+1 i
-—JCV2+1 + arctan 1296. x+l+2]/'§

% arc tan +

% In T
x arc tan x 2x—1

x'[ﬁ, 1207, pmt g 128, gy

+-arc tan (x+1). 1299, ln[x—i—l[-l—s(x;t:f_l_l) V_a_arctang’flfi;_
3x—17 1

15
a —_—
2“: dx 3 5)+ In (¥*—4x+5)+ 7 arctan (x—2).

In|x+l l—-—— In (x4 l)-[—--arc tan x.

x 3 il 15x% -+ 40x® 4 33x
X —

I 3 _
—l——arctanx 1304. x-—-—ﬂ—_{_—2+2ln(x—2x+2)+3arctan(x 1).

1305, %{81n|x'+8|—-ln|x"+l|). 1306. iln]x‘—ll—-
2%+ 1—V'5 13 3

. 1307, —
2x"+l+V-5| 2(x-—4)‘+x-—4+

x* +I _ 1 1

+lﬂ x——l I g 1310. ln|x |——--f- lﬂ I x"'.-l—l I . Hint_ Put l=___(x7+ l)____x?.

1311, lnlx]—%-ln]x=+1|+mslrﬁ. 1312. %—arctan(x{—l)--%-arctanx

x+1 1 1 ! ] 1 I

- In (x*+ x+1). 1300.

—x'+ x
4 (x +l)(x’+1)

1302, — i arc tan x

1301.

--—l—ln]x‘-i-x‘—l |— b 1o

2V 5

-4 |

+21n

Xg= BB, — g Te=T % —mtsme
— (=1, 3(x—1) 3

- arc tan x. 1315. 2 l/_x-—ll 7 4 5 +x] . 1318, Toar X

x[2 )/ (ax+6F—5b )/ {ax+ 6P| 1317. 2arctan V'xI 1. 1318, ﬁ{/'x'—

—33/ %+2V x—6In(1+ $/%). 1319, —x ,/T:—— ‘l’/xw-

42y x— 3?/;—6;‘/_5—3In[l+ 3/_;:[+6arc tan Vx.
(lfx+1ﬂ-l)'| 2 2V x+1+1

1320. In — arc tan - . 1321, 2 —2V 2
x+24+ Vx+1| V3 V73 Vi—2V72x

X arc tan ]/-:?—- . 1322, —2arctan YV | —x . 1323. Vx‘—l (x—-2)+_l. In]x 4

+ ¥V —1|. 1324 ——’ln el 2 where

3" 1y Ty aeta lf"" -
3
Z= Vx+l. 1325. -'—[2i+'5. 1326. 2.x+3 Vx"’-——-x-i—l+16ln(2x

x— 1
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42V A—x¥1). 1327, 9-";%& Vissa 1:*.23(3i x’+—x")

— b 1 3 3 |
><lfl+x‘——ln (x+ V 1+ 1. 1329. (4_F+8x') V-1 ’—-1—§ arcsln?

1 1 2—1
1830. 5 _!_1), V¥4 2x— 5 arc sin —— =Ty 18 = Vx'—x+l+—ln>(
x 44141
% (2—1+2 VF—xFT). 1332. lj,_ 1333. - In Y'Y
+ 2«2 i’/x"—{—l——l
I 4 f—r (2 -—-1) Vit e ] (z— 1)

— g ar tan /x ‘+1. 134, g . 1335. mln g w e +
V3 (2241 np— 1 44+3x°
L ) h =3/T+ . 1336 ——o——,

- arc V where 2 / -+ ] T @) 2

1337. —2 ]/(x . + 1)%. 1338. sinx-——%sin‘x 1339. —ccsx+%cos’x—.

} oo sinfy sin®x Il % 1 X sin? x
—gcos x. 1340. TRam 1341. 4cos 2—Ti-c:n:)s 5 1342. 5

1 3x sin 2x sin 4x
—W——21H’Sinx;. 1343. - + 39 .

8 4
x sindx x sindx  sin® 2x 5 1 Y -
. 1346, —lﬁx-]—ﬁsia 6"']"6'74 sin 12x+4-

1344, 3 32 . 1345. 6 64 . a8

-+ L sin® 6x 1347. —cotx— cot? 1348. tanx .1 tan® x 4 L] tan® x
‘44 ! ' 3 3 5 o

3 5
1349. —-°°; ”—‘:0;"‘. 1850. tan x -|-ta"'1 %

3 1

1 3In{tan x| — g — gy - 1352
% [ln

1355.

— 2cot 2x.  1351. 2 tan? x4

2
—|—2lnltan | 1353, -Ez_?x

2
Cos 2

X n —cosx Jdcosx | 3
tan (?-}-T) ” 1354. ~ e -I—E-ln

X
tan —
4sintx 8swfx

4-1n

sin 4x 3 sin 4x n i
16 cos*dx ' 32cos? 4x T35 32 ln tan (2""4‘7{) \ . 1356, —tanbx—zx,

5
1
1357. —“i;—’f—lnismn 1358. —  cot* x+cot x +x. 1359.%tan=:§+
x*  sin 2¢* cot® x
s X _ 2 .. P e
+ tan 3 Btan3+3ln 1360 1 3 1361, 3 .

33—, 33/ __° i
1362. _T/cos4x+—5-'/cos°x ,/cos "r. 1363. 2 V tan x. 1364. T.x

. i L
L VE+1“—— arc tan Z V2, where z= ¥ ian x. 1365. _C_FSE_F
22—z Y 241 2 2t —1 16

cos 2x sin 25x . sin 5x 3 3 x
- 2 . 1366, — 50 + m . 1367. 6-{—33111-—6- 1368. 3 'SE"‘

1 sin 2ax xcos 2b tcnsq) sin (2wt + @) sIn x
— 5 €08 £, 1369, ——+—7 . 1370, ——— PRy . 1371, 51

tan

X
CoS =

x1in
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X
tan ——2
sin bx = sin7x 1 1 | ] 2
“+ 59 e 58 1372. gcosﬁx—ﬁcos-lx——a-cosk. 1373. Tln =y
; t-an§+2

1374.

(%—]—%)l 1375. x——tan%. 1376. —x 4 tan x4 sec x.

b in

V3
tan %—-5 ;

1377. In|——— . 1378, arctan (1+tan72) 1379.

X
tan§—3

12

5 .
3% ﬁln|2smx+

-+ Jcrsx Solution. We put 3sinx + 2cosx=a(2sinx + 3cosx)
+B (2swx4+3cosx)’ Whence 20—3p=3, 3u+2=2 and, consequently,
o

=-‘—2. =——5.—. We have ngx+2u“ ="de_f:§

13 13 23mx+3cosx
(2sinx+43r s v) 12 5) . _
2 S X+ 3C 5 dx= 13 lslﬂl251ﬂ1+3l:05x1 1380. IHICOSI smxt.

1381. %-arc tan (lagx) Hint. Divide the numerator and denominator of the

-‘-fit—iﬂ) Hint. See Problem 1381.
Vs
. Hint. See Problem 1381, 1384. %lnx

1386. In(1 4 sinx).

fraction by ces? x  1382. 7—_,; arctan (
2tanx+3— V13
Qtanx+34 ¥ 14

| Hint. See Problem 1381. 1385, — 5 —coo—s.

- 9
1387. L An V 2+ sin 2 ygem, L 2=BE  qegs. L are tan X
2 V V?—-stx 4 l—sinx V-3

2tan—;—-l 1 3tan%—-1
- — —— arctan ——. Hint. Use the identity
V3 V2 2V

1383, —— In

V3

t_,gn v —H

X

. X
tan —
: ! . 1300, —x-+21In|—2—|. Hint.
X
tan §+1

3
Use the identity :+sm J‘:_}-CM'1f----=---l+ 2 1391. gogn

|——=:

St X —COS X {4smx—cosx’ 3

3x sinh2x  sinh4x sinh® x sinh 4x

X
1392. §+ 3 -+ - 1393. i 1394. _§+ )

X 1 tanh? x
tanh -é-‘—i-m. 1396. —2coth2x. 1397, In(coshx)— 5

3tanh%+2)

VB

2 sinh?x sinh2x x . .

r T_ﬁarc tan (e* ﬁ)] . 1401. - 4 5 Hint. Use the identity
=]

S oy = (sinh x4 cosh x). 1402, In(V 2cosh x+ V cosh 2x).

I/_

(2—s8ul x) (3—sin X) = 2”smx 3—smx’

X
—coshx.

1395. In

]
1398. t—coth x—mt;] X . 1399, arctan(tanhx). 1400. V__arctan(
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1403. x-12-1 V3—2x—x’+2mcslnx—-_;—l. 1404. —g— VZ24xt+In(x+ V2+x3).

1405, % V 9—!—3:“—% In (x4 V 9+ 3. 1406. -{%—1 Va—2x+2+
+—é— ln{(x—1- l/x”-—?x—|— 2) 1407. % Vx—4—2In |x+ ]f.r*—4[.
s, ZH i L 2er 142 VTR =3 P —er—7—

—8In|x—34+ V¥ —6x—7]. 1410, (—5171{2.:-1—1)(8:&-]-81:—}—1?) Vi Fxt+14

-
T x—2 ad
+1281n(2x+l+2]/x FxF1). 1411, 2]/_1 1412, == .
0 2x
1413, —— arctan <L 2 1V 2 gy ! VIt etV 2| s X
V2 Vl—xa 2V2 |/|+x'—-x}/2
7 1
— D3 | _By2_ — : AT A P
x(.v‘ 2x* 4- 5x* — OS¢ + 2) 1416. 5 (x + 5 sinﬁx-{—ﬁ cos bx Sssmﬁx)
1417, —““53"+S"l'83x+””‘;s"-—s‘;" 1418. —(2—31n2x—c052x)
x [) 1 - (e X
1419. £ (25112t+us2t 451114):1-;-1‘. a4r)_ 1420.t[x(sinx-i-cosx)-—smx],
1421. -% —In|e* lH———ln(e +2) 1422, x—In(24+e*+2 Ve fx+1).
1423. — (x’ In —— l + —|—ln (1—x?) + «* ] 1424, x ln?* (x + V1i+x)—2 ]f] + x% X
2 9 5x -6
X1n (x Vl+x3}+2x. 1425. Ol lOG)arc cos (5x—2)——-m— X
X ¥V 20x—25—3. 1426. S‘"“"th;c””s“‘h”. 1427, I, =50 'l)a,x

. 2n—3) 1 P LN larclani'l——l—x
Xy @ = | h=ga(mrats 7 ) =g

[;;%4-2 - arctan E} . 1428, Ir':_cosxs:ln""x_l_n:l T
I‘__%x_cns x::wi’x__:}m;lﬁ?x: !‘=_cns xssi"‘x—--!%cosxmn'x ——%cosx
1429, I =— 1S)i:oiﬂ—nx+2:f!""" !,=%+%ln tan (-‘;-4-%) l .
I;=3—i%+%tanx. 1430. [,—=—x"e~%4nl _; I,,=—e % (x4 10x°+
+10-9x*4,..+10.9-8 ... 2x+410.9... 1). 1431. Vlﬁarctan'/i;‘f')
1432. In ¥V ©*—2x + 2—4 arc tan (x—1). 1433. (x—; I)z-l--l In (x —|—x-i-—2-) +

1 x2 x+3 1 1
—|—§arc tan (2x+1). 1434. = In ]/_:Ei-l-_S 1435. 21n | BT
1436. %(ln £-4+)

|
5
— ] ) 1437. -1—-( 3 + arctan-—f—_.).
Vexri| x+1 4\ 2427 Y3 V2
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1 2x x+41 1 X—2 2x—1
‘438- _(—I—x’ —f—ll‘l x—-l ) . 14;9_- ‘E(_ x+l}l+6 xl—x+l+
2 x(34+2V x) 1 & 1
——— arc tan — 1440. S v 441 ————
T3V % 2V ek
1442, | (x — xtbx 1) 1443. V2x——~ 2x)* . 1444.
n(xt+s+V 2 V/ @x)f /Hl
2¢— |
1445. e 1446. —2 5—x—1)*—41n(l 5—x
R T (/5—x 1+ 3/5—=xn.
| 1 — x% 1
1477, In|x+V¥—1|————v Vx=-1 . 1448, --2- T 1448, 3"
x4 1 —1 \V‘l—x‘—-?'
Xarce —_— 1450, —. 1451. —
r 5“121/2 1 ,/xgl—}-I 1 /71 l8 ° ]f3
2 (x+1) . T L x -
X arcsin rew Rl Hint. x’-[-4x—7f( x+4) 1452, 5 Vx’
-—-3—111 | x4 }/xa—9|c 1453. (Bx—l) V x—axt 4x*+64arc sin (8x—1)
1454. In I ‘ uss, @42 VEduts
2+ 142V E+x+1 3
x+1) ViaiToiro 1 VETo2 Vx—1
g P +2x+2——ln (x+14V x* 4254 2). 1456. p .
Vixr=T1) Vi—xr—1 1
-—T 5 1457. ,_ In m 1458. h? lﬂ'z—[ [+
3
1 ‘/l-l—m:‘I 5
2 e e i P T TR EEEY
—|-.3 In(z*+z24+1) V_arc tan '/_ , Where 2z Z . 1459, 2><
xlnt+ V i+ ), 1460, T +sm42x+si:24x . 1461, In|tanx|—coil?x—

1 . 2 ¥ (cotx)® 5 . 5/ ol
~ 7 cottx. 1462. —cotx——-——g—-. 1463. 75 (cos --6)‘/(:05

cos5¢ " 3cos S5x 3 5x tan x  tan®x
1464. T 20sw'5x 40 sin?bx +Zﬁ' ta““i‘ 1483. + 5
| s [ X W R
1466. -3-5111215. 1467. tan (§-+T)+2In cos(?-l—-i-)l . 1468. ——V:x
X
£3an o=t 1 2tanx
X arctan —————— . 1469, —— arctan 1470. arc tan (2 tan x--1).
V3 V1o ( ¥V 10 ) )
X
1 1 (ta“ 5 1
1471. — In| tanx 4 sec x| — —= cosec x. 1472, ——_—.xarc tan — ——X
o TR ik V3 V3’ V72

x
tan &
‘xarctan( V_:) 1473, Injtanx+2+ Vitan*x+4tanx+1]. l474'—:-1->(

e 2
X 1o (sin ax 4 Ifa’-i-smz ax). 1475, -l x tan 3x+—!- Injcos3x|. 1478. %—

xsin2x  cos2x e’ x?

X
g 5 WL - (2x—1). U8 =, 14 3 1 Vi—x—
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‘_‘(-l;,_]“f""'"“ —————— , 1480. ¥V 1+ x* arc tanx—1In (x+ V T+ 2.

1 3x 1  5&6x 1 X l tn byl
1481. isinf—-msin—j-—-—isini . 1482, TS 1483. In |1 4-cotx]—cot x.

sin;ﬁx 1485, —2cosh ¥ T—x. 1486. %!ncosh2x. 1487, —xcoth x4

1 e —3

+1In[sinhx[.  1488. %—;——E—%Inm"—ﬂ. 1489. - arctan —5— .
1490. 2 FTI -2 FTIE. ue : 710 L+ 2" 490 —L'Mx
o 7V EF T —g Y ED, " nd U T=2% " T2m10

sy X l ) o3, 2V ETI+m Y eti=1,

"(x ETSURIEIT YR P Ve+i+1
2

E_ | gelanx g -l(x‘arcsln—l—[-x-"——ld—?}/'x‘——l).

1496. -;a(coslnx-}-sinmx). 1497, -;—-(-—-x’cos5x+—%xsln5x+3xc055x+

+%cos§x—%sin Sx) . 1498, -l—-[(x'—2)arc tan(2x+3)+ In (2x’+6x+5)—-

1481

1494, In

X 1 z 1 x|xl
—i‘]. 1499, 5 V-x-—x +(x-?)arcsm lfx. 1500. TR

Chapter V

20 —1
1501, b—a. 1502. o,T —g 5 - 1503. 3. 1504. Ty 1505. 156.
Hint. Divide the interval from x=1 to x=5 on the x-axis into subin-
tervals so that the abscissas of the points of division should form a geo-
metric progression: x,=1, x,=x,49, X,=x4% ..., x,=x4g". 1508, In-—l?- =
Hint. See Problem 1505. 1507. 1—cosx. Hint. Utilize the lormula

sina +4-sin2a -+ ... 4 sin no = 1 C0S - —cOs (n-{——l a| . 1508. 1) 'ﬂ—
.« 2 2 da
251n?

| ] -
e 4 -x14 -X
ST )db - 1509, [nx. 1510. — VT H5 1511, 2= —¢

cosx 1 1 3
= V;-j-ﬁcos;i. 1513. x=nn (n=1,2,3, ...). 1514. In 2. 1515, —— ,

8
1616. e*—e~*=2sinhx. 1517. sinx. 1518, % Solution. The sum s,=

=—E+n!+ -|- —:T(;:--[--i——l-...+n l)may be regarded as the inte-

gral sum of the iunctron f(x)=1x on the interval [0,1]. Therefore, lim s, =
n-—»wm

1512,

=

._Sxdx— . 1519. In 2. Solution. The sum s"=n+l.

gt et

n+n
=_( s L = ) may be regarded as the integral sum of

4= 14= 14
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the function f(x)=

1—:—x on the interval [0,1] where the division points have

k
= — = 2 fany » ’ i ]
the form x; 1+n k=1, 2, n). Therefore nlﬁﬂﬂs,, Sl—l—x In 2.
| 7 100 1 7 16 2
1520, Py 1521. 7 19522. -3—-_333 . 1523. T 1524. T - 1525. —
1526. ; ln% . 1627. lnﬁg . 1628. 35 11—5—32111 3. 1629. arctan3—arctan2—=
1 4 n 1 ran O T
= arctan = 7 1530. ln-ﬁ-. 15631. T 1532. l—ﬁ. 1533. T 1534. Dl
' i 1V n | 2
1535. —3- 5 1638. —§-+4 . 1B637. 7 1538. In2. 1539. 1-—cos 1.
4 mn . 1 1
———— e = . — —, 1543, =—[fg——
1540. 0. 1541, - l/...3+ 5 1542. arc tane 2 sinh | 5 (e = ) :
1544. tanh (In 3)—tanh (In 2):%. 1545. ——%—i—%sinh 2. 1546, 2. 1547. Di-
verges, 1548. Tl_p if p<l; diverges, if p=1. 1549. Diverges. 1550. % :

|

1651. Diverges. 1552, 1. 1553. =T’ if p>1, diverges, if p<<l. 1554. m.

1
1555. Vi 1556. Diverges. 1557. Diverges. 1558. — 1559. Diverges.

3
1560. —1—- 161. Diverges. 1562, — 1563. .. 1564, — + 103 1565, 2%_
In k 8 3 4 3 V3
1566. Dlverges 1567, Converges 1568. Diverges 1563. Converges. 1570, Con-
verges. 1571. Converges 1572. Diverges 1573. Converges. 1574. Hint. B (p, g)=
1,
S f(-’c)dx+s f{x)dx, where f(x)=xP~'(1—x)97"; since lim f(x)x'"P=1
X =0
and lim [l-x)l‘?f(x)—l both integrals converge when 1—p<1 and 1—¢g<]1,
X1
ob

that is, when p>0 and ¢>0. 1575. Hint. I (p)=\ f(x) dx—[—Sf{x) dx, where

T P Y

1
f(x)=xP""e"*, The first integral converges when p>0, the second when p is

it
) Inas
arbitrary. 1576. No. 1577. 2V‘2j V' idt. 1578, EW 1579. g dt.
n In s
-
f (arc tan f) . 9
1580. S_f"-;T‘“' 1581, x=(b—a)f-+a. 1582.4—21n3. 8> V?in'
b8 1 A i1 n —_ n
— . — 15 VT s i, : 3t
1584. 2—-5, 1585 7 1586 1587. 1—--. 1588 V3 3
: 4
1589. 4—x. 1590. -;-mu:z. 1591. In —”L—L. 1592, %Jr% 1593. ’%“
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1594, =~ . 1599. ,—3‘-1. 1600. 1. 1601. "”—:3. 1602. %(e“-i—ll. 1603. 1.

2
b 2]
a - .
1604. FiE 1605. IR 1606. Solution. I‘{p+l)=S xPe=*dx. Applying
]
the formula of integration by parts, we put xP=u, e~* dyx=dv. Whence
du=pxP~1dx, v=—e™%

and

«®
I (p+1)=[—x7e~*|+p | xP~'e™% dx=pT (p) *)

0

1f p is a natural number, then, applying formula (*) p times and taking into
account that

I‘(1)=S e~ ¥dx=1,
1]

we get:
F(p+1)=pl
1.3.5 ... (2k—1)=n :
1607. [,,= a6 Ok }~2-, if n=2k is an even number; /,p,,=
2.4.6 . 2k

, il n=2k41 is an odd number

=155 ... (Zk+1D)

1,_.!3@- I __63n
=316 9512 °
— D {g—1)! A m+1 nil ; 8o
1608. (-I- —Tr 1609. 2E’: ) Hint. Put sin®*x—=¢.

1610. a) Plus, b) minus; ¢) plus Hint. Sketch the graph of the integrand for
values of the argument on the interval of integration 1611, a) First; b) second;

| I 3 1
c) first. 1612, T 1613. a. 1614, 5 - 1615. —52. 1616. 2nrcsm§,
= 2 2 2 n2
1617. 2<i<V 5. 1618. §<1<7. 1619. ldu<1<—?~n 1620, 0<1<3§.
V‘z 32
_—-3--.

Hint. The integrand increases monotonically. 1621. <I< . 1623, s

1624. 1. 1625. —% Hint. Take account of the sign of the function. 1626.

1627. 2. 1628, In2. 1629. m*1n3. 1630. ma®. 1631. 12. 1632. —p’ 1633. 4

3

2 32 n 1

1634. 10—3-. 1635. 4. 1636. — g 1637. 27 1638. e+-—e--—2=2(coshl——l).
3

1639. ab |2 ¥V 3—In(2+ V' 3)]. 1640, 7 ™a'. Hint. See Appendix VI, Fig. 27.

1641. 2a%~'. 1642. —g-a*. 1643. 15, 1644, %m 3. 1645. 1. 1646. 3na®. Hint.

See Appendix VI, Fig. 23. 1647. a? (2-{--’—‘-) Hint. See Appendix VI, Fig. 24.

1648. 2:1—[——— and Gn—-% 1649. -';n 3 V_3 3 +“§3 1650, Buab.

T
4 -
1
)
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1651. 3na?. 1652. n (b® 4 2ab). 1653. Gna®, 1654, %a’. Hint. For the loop, the
parameter { varies within the limits 0 <<{<<+4 0 See Appendix VI, Fig. 22.
1655, —g-:ta’. Hint, See Appendix VI, Fig. 28. 1656. 8n%a®. Hint. See Appen-

2 32
dix VI, Fig. 30. 1657. ’-‘g-. 1658. a®. 1659. “-4"— Hint. See Appendix VI,
9 14—8 V'3 lfa

2
Fig. 33. 1660. — m. 1661. a*. 1662. — P ___ 1663, a
2 3 (1 —e?) Is”

1664. n ) 2. Hint. Pass to polar coordinates. 1665. %(10 V'IT)'—-I).
1666. J h*—a®. Hint. Utilize the formula cosh?a—sinh*a=1,

—— e — .—
1667. V2 +In(1+ V2). 1668, Y1 +e— Y3 +1n“/'+‘ L)(ﬁJr').

1669. l+—;~ln—g-. 1670. In(e + VeE—1). 1671. In(2+ V'3) 1672 —1~(e=+1).

a el — sinh b (-
1673. aln-. 1674, 2a V3 . 1675. ln : 1+a— =In . 1676. —-aT*.
4(::

3 i ———
-—352 . 1678, 16a. 1679, naV T+ 4n +

—-—In(2n+ YV T+ 4n?) . 1680.8a. 1681. 2a [V 2 +1n(V' 2 +1)] 1682, V5

3+ Vs aVi+m 4 .
+1n —5—. 1683, ————. 1684. —2-[4+1n3] 1685. W 1686, — nab®.
3 11 4

1687. 3 (c +4—e™%. 1688. 8 n®  1689. Vg o 1690. vy 7::.

]
2 io,=om 1002 (8% 1608 SZrat. 1604 -mpt. 1605, .

5 15
¥
1696. %’-(15—16 In2). 1697. 2n%a’. 1698. 1699, — nha. 1701. a) 5na’:;

Hint. See Appendix VI, Fig. 29. 1677,

1691. v, =

R’H 16
T2 15
L]
b) 6n%a®; «c) Er-a—(Qn‘—l(t‘-). 1702, -—3—2-rta' 1703. ﬁm' 1704 iﬂa'

105 3 ’ ©o21
Ab+-aB nabh 128 8

T ’ s
+a b) 1706. 3 1707, —_105a 1708. 3 nab.
lb

l 2 3 2 \ 4
1709. 5 nath, 1710, 2a®. 1741, na* ¥ pg. 1712, nabh(l-{——a—a?). 1713, - nabe.

1714. s-g—‘llfﬁ_u; ?m’ﬁ V5—8l. 1ms. 2x{V2 +n(V2 +1)].

1716, a(V5— V'§‘)+uln%§%‘). M7 a(VE+in(+V2)].
2 2

1718. “-f-{e=+e—*+4)=ﬁf‘-{2+sinh 2). 1719, 15-2-:«:1 1720.-3’3(,;-1) (€ +e+4).

1721. dnab Hint. Here, y=b+ V a*—x*. Taking the plus sign, we get the

external surface of a torus; taking the minus sign, we get the internal sur-

face of a torus. 1722. 1) 206"+ 2220 arcsine; 2) 2nat+ 20 1n 12,

E__pt
=_(_£’B_b.' 64m . b) 16n*a®; c) %2:1::’.

1705, — (AB+

where

(eccentricity of ellipse). 1723. a)
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1724. —l—gﬁnaa 1725, 2ma*(2— V' 2). 1726. 1-52-3na=. 1721. MF% Va* + %
2 2 3

My=5 V@15, 1728, M,=%: M,,=“2—b, 1720.  My=My="-:
F=p=2. 110, My=My=-ga% F=j=2a 1181 2:a’ 1782 x=0;
— @ 2+sinh2 — asinag — R N | — 4a
=7 -—HE'E—I'—— 1733. xg-— a y-—D 1734.51—-!‘50, Y= 3 a. 1735. x"ﬁ;

— 4b - — - =5 a

yﬁﬁ?‘, 1736. x_.y_iﬁ. 1737. x=nmna;, y= 5 1738. (0. 0'?)' Solu-

tion, Divide the hemisphere into elementary spherical slices of area do by
horizontal planes. We have do=2nadz, where dz is the altitude of a slice.
a

2nS az dz
Whence ?:—ﬁ;—:-;-. Due to symmetry, x=y=0. 1739. At a dis-
tance of -%- altitude from the vertex of the cone. Solution. Partition the

cone into elements by planes parallel to the base. The mass of an elemen-
tary layer (slice) is dm;=ymng*dz, where y is the density, 2z is the distance

of the cutting plane from the vertex of the cone, Q=—~'—z. Whence

h
A 2
7 S ’% 2 dz
'E:._l"_.__:%h, 1740. (0; 0; —I—%a). Solution. Due to symmetry,
-3—nr’h

x=y=0. To determine z we partition the hemisphere into elementary
layers (slices) by planes parallel to the horizontal plane. The mass of such
an elementary layer dm=1ynr®dz, where y is the density, z is the distance

of the cutiing plane from the base of the hemisphere, r= } a*—2* is the

T § (a®—2%) zdz .

radius of a cross-section. We have: z= 5 =ga 1741. I =na?,
— na?
i 4 ] 1 1
_ b O T i s AR e 3. S —
1742, [g= ab% Tp=-50%. 1743. =gz hb*. 1744, 1= 7ab®; Iy=-f nas.

1745, ]:..—-;—-n(R:-—R:). Solution. We partitien the ring into elementary
concentric circles. The mass of each such element dm=vy2nrdr and

R,
the moment of inertia l=2ns. i dr=% n(R;—R}): (y=1). 1746. | = ila:mR‘Hv.

R,
Solution. We partition the cone into elementary cylindrical tubes paraliet
to the axis of the cone. The volume of each such elementary tube is
dV =2nrhdr, where r is the radius of the tube (the distance to the axis of

the cone), h=H (I—RL) is the altitude of the tube; then the moment of
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ynR*H

R
i — _.__r_ 3 T e—
inertia !-—y52nH (1 R)r dr T where y is the density of the
L]

cone. 1747, I=-25’—Ma’. Solution. We partition the sphere into elementary
cylindrical tubes, the axis of which is the given diameter. An elementary

2
volume dV =2nrhdr, where r is the radius of a tube, h=2ua ]/ 1— L

—

(3
2
is its altitude. Then the moment of inertia / =4mnay ( ]/1 — g?r'dr:-% na®y,
; Lt

where y is the density of the sphere, and since the mass M=-§—na'y, it fol-

lows that J:%Ma’. 1748. V=2n%%; S=4n’ub. 1749. a) }‘29—:1 a;

5
b) E=_=T%p_ 1750. a) x=0, y_:-{;——;— Hint. The coordinate axes are cho-
sen so that the x-axis coincides with the diameter and the origin is the

centre of the circle; b) ?::% Solution. The volume of the solid—a double

cone obtained from rotating a triangle about its base, is equal to V:u%- rbh?,
where b is the base, h is the altitude of the triangle. By the Guldin theo-

rem, the same volume V:QJE—:}_M_ where x is the distance of th: centre

— rf &
of gravity Irom the base. Whence x = 1751, vﬂt—g—r—

g -

e &

75 Cln(l U‘z’) 1753. x= qnot: v
1752. % 1 e i . = S Sel Ugy

%v,, 1754. S— 10" m.
a

A a A
1755. U:-? ‘n (ﬂ——bt)' h:b—a K [bzl—lﬂ—bfl) lna:_!)_i;] ™ 1756‘. A:‘.

=E2Y R*H? Hint. The elementary force (force ol gravity) is equal to the

weight of water in the volume ol a layer cf thickness dx, that s, dF =
=ynR?dx, where y is the weight of unit volumc of water. Hence, the ele-
mentary work of a force dA==ynR*(H—x)dx, where x is the water level,

1767. A= YR'H:. 1758. hA-:-J-;l R‘TM ==079:10*=079.10" kgm.
1759. A=vyaR*H. 1760. As_m_g_?: »=mgR. Solution. The force acting
T
R

on a mass m is equal to F=kaT-. where r is the distance from the centre
of the earth. Since for r=R we have F?mhg, it follows that kM =gR®. The
-+

; mM 1 | ;

sought-for work will have the form A= é: k 3 dr=kmM (ﬁ—ﬁ“ﬁ)=

= mghh . When A= we have Ao=mgR. 1761. 1.8-10* ergs. Solution,
l+_l_?-
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The force of interaction of charges is F=%§l dynes, Consequently, the work

performed in moving charge e, from point x;, to x, is A=.-e.ele——.-
I B
=g, e (—L——?)-_:l.B-lU‘ ergs. 1762. A=800 nIn2 kgm. Solution. For an

X
isothermal process, pv=p.v,. The work performed in the expansion of a gas
t't

from volume v, to volume v, is A= pdv=p,,voln§1. 1763. 4 = 15,000 kgm.
0
U
Solution. For an adiabatic process, the Poisson law pv"=pou’;, where
Uy

"p,,v"‘r v v\ k-1
k=14, holds true. Hence A=5 0 du- Poo[l_(,g) ]
Uk k"'-l v,

Uy

1764. A=-%~:rtpPa. Solution. If e is the radius of the base of a shaft, them

the pressure on unit area of the support P=“,$_ . The frictional force of a

a
ring of width dr, at a distance r from the centre, is g‘%ll-:‘-n:!r. The work per-

formed by firictional forces on a ring in one complete revolution is

dA—_-4m:P r®dr. Therefore, the complete work A=4’$P

a
X S rtdr= —}ina.

1765. imR’m’ Solution. The kinetic energy of a particle of the disk

oriw?

Ku.__= 5 do, where do is an element of area, r is the distance of it

from the axis of rotation, @ is the surface density, Q::JW' Thus,
R

dK = 2M;;z r* do. ﬁ;‘:’Sr'dr=M‘Tm' 1766, K_EaxMR'm’
0

1767. K=%R’m‘ 2.3-10° kgm. Hint. The amount of work required is equat

lo the reserve of kinetic energy. 1768, p__bg 1769. pJﬁi’?ﬁzzlL&W T

1770. P =abynh. 1771. P=HR;H (the vertical component is directed upwards).

2
1772, 633 5 gm 1773, 99.8 cal. 17M. M="0Pgf em. 1735, f"i”‘” (k is the

gravitational constant). 1776. 222 Solution. Q= Sinrdr__ T S(a:_ra} rdr=s

8].1. .
0
A - ~2 pab :
~2pl [ 2 4 |0 8ul- 1777, Q Vady 3PM Hint, Draw the x-axis

15—1900
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along the large lower side of the rectangle, and the y-axis, perpendicular to

Uz
it in the middle. 1778. Solution. S-—-S-—;-dv; on the other hand, %:a,
<1
t',d
whence dt:-;—dv. and consequently, the acceleration time is t=§§=s,
oy
rQ Q. Q. £7%,Q. Qf _x
1779. M,,=—57(x-ndt+§-x=—7 [xt——g-]u+—§x=7(l—-f—) :
o
x

1780. Mx=—-5.(x—-l) kt dt+Ax=kﬁ—x(l’—x’). 1781, Q =0.12 TRI? cal. Hint.

1]
Use the Jeule-Lenz law,

Chapter VI
2 2 2 2
1782, V=-§-(y2-—x=)x. 1783. S=7(x+y) V 422 -3 (x—y)*.
] . 5 . _ ya_xx xn_yz yz_x!
1784, f(i, 3)_3, fa, —n=—2. 1ms. L=, I ,Vzty ,
2x R? | - a2
x,_-”y,. 1786. f(x, x)=1-+x—s 1787 2= 0. 1788, f(1) = — .

; 7 v N2
Hint. Represent the given function in the form f(%): ]/(:_j) + 1 and

replace 4;’:— by x. 1789, f(x, y}-——xl-_ XY . solution. Designate x4y=u,

2
— _ukv  u—v e T el el
X—y=uv. Then x———z——; !1"“'_2" f(u’ U)'—" 2 ’ 2 +( 2 ) -

" ut—uv
_

5 It remains to name the arguments u and v, x and y. 1790. f (u)=

=u?42u; z=x—1+Vy. Hint. In the identity x=1+4f(V'x—1) put
Vix—l1=u; then x=(u+1) and, hence, f(u)=u®+2u. 1791. [(y)=
=VT1+y% z=V'+y* Solution. When x=1 we have the identity

Vlﬂ«*:l-f(%), i.e., f(y)=VT1+4. Then f(%)= "/l-k-(;z-)!and
2
2=X l/ 14 (%) =V x*4y*. 1792, a) Single circle with centre al origin,

including _ the circle (x*4-y*<< 1); b) bisector of quadrantal angle y =x; c) half-
plane lo®*ated above the straight line x+g=0 (x+y > 0); d) strip contained
between the straight lines y= 4 1, including these lines (—l<<y<1); ¢) a
square formed by the segments of the straight lines x= 4 1 and y= + 1, includ-
ing its sides (—l=<x<{1, —1<<y<1); i) part of the plane adjoining the
x-axis and contained between the straight lines y = + x, including these lines and
excluding the coordinate origin (—x<<y<<x when x>0, x<y<<—x when
x<0); g) two strips x=2, —2<y<2 and x<—2, —2<=<y<2; h) the
ring contained between the circles x*4y*=a® and x*+4y*= 24, including the
boundaries; i) strips 2nne x < (2n+ 1), y =0 and 2n+ D n<<x < (2n42) 7,
y&0, where n is an integer; j) that part of the plane located above the



